Journal of High Energy Physics

, 2013:122 | Cite as

h→γγ excess and dark matter from composite Higgs models

Article

Abstract

Composite Higgs Models are very appealing candidates for a natural realization of electroweak symmetry breaking. Non minimal models could explain the recent Higgs data from ATLAS, CMS and Tevatron experiments, including the excess in the amount of diphoton events, as well as provide a natural dark matter candidate. In this article, we study a Composite Higgs model based on the coset SO(7)/G2. In addition to the Higgs doublet, one SU(2)L singlet of electric charge one, κ±, as well as one singlet η of the whole Standard Model group arise as pseudo-Goldstone bosons. κ± and η can be responsible of the diphoton excess and dark matter respectively.

Keywords

Higgs Physics Technicolor and Composite Models 

References

  1. [1]
    D.B. Kaplan and H. Georgi, SU(2) × U(1) Breaking by Vacuum Misalignment, Phys. Lett. B 136 (1984) 183 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs Scalars, Phys. Lett. B 136 (1984) 187 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    S. Dimopoulos and J. Preskill, Massless composites with massive constituents, Nucl. Phys. B 199 (1982) 206 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    TEVNPH (Tevatron New Phenomina and Higgs Working Group), CDF, D0 collaborations, Combined CDF and D0 Search for Standard Model Higgs Boson Production with up to 10.0 f b −1 of Data, arXiv:1203.3774 [INSPIRE].
  5. [5]
    ATLAS collaboration, An update to the combined search for the Standard Model Higgs boson with the ATLAS detector at the LHC using up to 4.9 fb−1 of pp collision data at \( \sqrt{s}=7 \) TeV, ATLAS-CONF-2012-019 (2012).Google Scholar
  6. [6]
    CMS collaboration, Combination of SM, SM4, FP Higgs boson searches, CMS-PAS-HIG-12-008.
  7. [7]
    K. Agashe, R. Contino and A. Pomarol, The Minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [INSPIRE].ADSGoogle Scholar
  9. [9]
    B. Gripaios, A. Pomarol, F. Riva and J. Serra, Beyond the Minimal Composite Higgs Model, JHEP 04 (2009) 070 [arXiv:0902.1483] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    J. Mrazek et al., The Other Natural Two Higgs Doublet Model, Nucl. Phys. B 853 (2011) 1 [arXiv:1105.5403] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    M. Redi and A. Tesi, Implications of a Light Higgs in Composite Models, JHEP 10 (2012) 166 [arXiv:1205.0232] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    E. Bertuzzo, T.S. Ray, H. de Sandes and C.A. Savoy, On Composite Two Higgs Doublet Models, arXiv:1206.2623 [INSPIRE].
  13. [13]
    M. Frigerio, A. Pomarol, F. Riva and A. Urbano, Composite Scalar Dark Matter, JHEP 07 (2012) 015 [arXiv:1204.2808] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    A. Djouadi, Squark effects on Higgs boson production and decay at the LHC, Phys. Lett. B 435 (1998) 101 [hep-ph/9806315] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    F.J. Petriello, Kaluza-Klein effects on Higgs physics in universal extra dimensions, JHEP 05 (2002) 003 [hep-ph/0204067] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    T. Han, H.E. Logan, B. McElrath and L.-T. Wang, Loop induced decays of the little Higgs: Hgg, γγ, Phys. Lett. B 563 (2003) 191 [Erratum ibid. B 603 (2004) 257] [hep-ph/0302188] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    C.-R. Chen, K. Tobe and C.-P. Yuan, Higgs boson production and decay in little Higgs models with T-parity, Phys. Lett. B 640 (2006) 263 [hep-ph/0602211] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    R. Dermisek and I. Low, Probing the Stop Sector and the Sanity of the MSSM with the Higgs Boson at the LHC, Phys. Rev. D 77 (2008) 035012 [hep-ph/0701235] [INSPIRE].ADSGoogle Scholar
  19. [19]
    I. Low and S. Shalgar, Implications of the Higgs Discovery in the MSSM Golden Region, JHEP 04 (2009) 091 [arXiv:0901.0266] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    I. Low, R. Rattazzi and A. Vichi, Theoretical Constraints on the Higgs Effective Couplings, JHEP 04 (2010) 126 [arXiv:0907.5413] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    G. Cacciapaglia, A. Deandrea and J. Llodra-Perez, H → γγ beyond the Standard Model, JHEP 06 (2009) 054 [arXiv:0901.0927] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    S. Casagrande, F. Goertz, U. Haisch, M. Neubert and T. Pfoh, The Custodial Randall-Sundrum Model: from Precision Tests to Higgs Physics, JHEP 09 (2010) 014 [arXiv:1005.4315] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    K. Cheung and T.-C. Yuan, Could the excess seen at 124-126 GeV be due to the Randall-Sundrum Radion?, Phys. Rev. Lett. 108 (2012) 141602 [arXiv:1112.4146] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    M. Carena, S. Gori, N.R. Shah and C.E. Wagner, A 125 GeV SM-like Higgs in the MSSM and the γγ rate, JHEP 03 (2012) 014 [arXiv:1112.3336] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    J. Cao, Z. Heng, T. Liu and J.M. Yang, Di-photon Higgs signal at the LHC: a Comparative study for different supersymmetric models, Phys. Lett. B 703 (2011) 462 [arXiv:1103.0631] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    B. Batell, S. Gori and L.-T. Wang, Exploring the Higgs Portal with 10/fb at the LHC, JHEP 06 (2012) 172 [arXiv:1112.5180] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    A. Arvanitaki and G. Villadoro, A Non Standard Model Higgs at the LHC as a Sign of Naturalness, JHEP 02 (2012) 144 [arXiv:1112.4835] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    V. Barger, M. Ishida and W.-Y. Keung, Total Width of 125 GeV Higgs Boson, Phys. Rev. Lett. 108 (2012) 261801 [arXiv:1203.3456] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    N. Arkani-Hamed, K. Blum, R.T. D’Agnolo and J. Fan, 2:1 for Naturalness at the LHC?, arXiv:1207.4482 [INSPIRE].
  30. [30]
    A. Arhrib, R. Benbrik and C.-H. Chen, H → γγ in the Complex Two Higgs Doublet Model, arXiv:1205.5536 [INSPIRE].
  31. [31]
    A. Alves et al., Probing 3-3-1 Models in Diphoton Higgs Boson Decay, Phys. Rev. D 84 (2011) 115004 [arXiv:1109.0238] [INSPIRE].ADSGoogle Scholar
  32. [32]
    H.M. Lee, M. Park and W.-I. Park, Axion-mediated dark matter and Higgs diphoton signal, JHEP 12 (2012) 037 [arXiv:1209.1955] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    J. Kearney, A. Pierce and N. Weiner, Vectorlike Fermions and Higgs Couplings, Phys. Rev. D 86 (2012) 113005 [arXiv:1207.7062] [INSPIRE].ADSGoogle Scholar
  34. [34]
    S. Kanemura and K. Yagyu, Radiative corrections to electroweak parameters in the Higgs triplet model and implication with the recent Higgs boson searches, Phys. Rev. D 85 (2012) 115009 [arXiv:1201.6287] [INSPIRE].ADSGoogle Scholar
  35. [35]
    A. Joglekar, P. Schwaller and C.E. Wagner, Dark Matter and Enhanced Higgs to Di-photon Rate from Vector-like Leptons, JHEP 12 (2012) 064 [arXiv:1207.4235] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    I. Dorsner, S. Fajfer, A. Greljo and J.F. Kamenik, Higgs Uncovering Light Scalar Remnants of High Scale Matter Unification, JHEP 11 (2012) 130 [arXiv:1208.1266] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    L.G. Almeida, E. Bertuzzo, P.A. Machado and R.Z. Funchal, Does H → γγ Taste like vanilla New Physics?, JHEP 11 (2012) 085 [arXiv:1207.5254] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    P. Draper and D. McKeen, Diphotons from Tetraphotons in the Decay of a 125 GeV Higgs at the LHC, Phys. Rev. D 85 (2012) 115023 [arXiv:1204.1061] [INSPIRE].ADSGoogle Scholar
  39. [39]
    A. Akeroyd and S. Moretti, Enhancement of H → γγ from doubly charged scalars in the Higgs Triplet Model, Phys. Rev. D 86 (2012) 035015 [arXiv:1206.0535] [INSPIRE].ADSGoogle Scholar
  40. [40]
    S. Dawson and E. Furlan, A Higgs Conundrum with Vector Fermions, Phys. Rev. D 86 (2012) 015021 [arXiv:1205.4733] [INSPIRE].ADSGoogle Scholar
  41. [41]
    N.D. Christensen, T. Han and S. Su, MSSM Higgs Bosons at The LHC, Phys. Rev. D 85 (2012) 115018 [arXiv:1203.3207] [INSPIRE].ADSGoogle Scholar
  42. [42]
    M. Carena, I. Low and C.E. Wagner, Implications of a Modified Higgs to Diphoton Decay Width, JHEP 08 (2012) 060 [arXiv:1206.1082] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    A. Delgado, G. Nardini and M. Quirós, Large diphoton Higgs rates from supersymmetric triplets, Phys. Rev. D 86 (2012) 115010 [arXiv:1207.6596] [INSPIRE].ADSGoogle Scholar
  44. [44]
    E.J. Chun, H.M. Lee and P. Sharma, Vacuum Stability, Perturbativity, EWPD and Higgs-to-diphoton rate in Type II Seesaw Models, JHEP 11 (2012) 106 [arXiv:1209.1303] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    A. Carmona, M. Chala and J. Santiago, New Higgs Production Mechanism in Composite Higgs Models, JHEP 07 (2012) 049 [arXiv:1205.2378] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    N. Vignaroli, Early discovery of top partners and test of the Higgs nature, Phys. Rev. D 86 (2012) 075017 [arXiv:1207.0830] [INSPIRE].ADSGoogle Scholar
  47. [47]
    R. Barcelo, A. Carmona, M. Chala, M. Masip and J. Santiago, Single Vectorlike Quark Production at the LHC, Nucl. Phys. B 857 (2012) 172 [arXiv:1110.5914] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    C. Bini, R. Contino and N. Vignaroli, Heavy-light decay topologies as a new strategy to discover a heavy gluon, JHEP 01 (2012) 157 [arXiv:1110.6058] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    G. Brooijmans et al., Les Houches 2011: Physics at TeV Colliders New Physics Working Group Report, arXiv:1203.1488 [INSPIRE].
  50. [50]
    R. Contino, C. Grojean, M. Moretti, F. Piccinini and R. Rattazzi, Strong Double Higgs Production at the LHC, JHEP 05 (2010) 089 [arXiv:1002.1011] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    R. Grober and M. Muhlleitner, Composite Higgs Boson Pair Production at the LHC, JHEP 06 (2011) 020 [arXiv:1012.1562] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    R. Contino et al., Anomalous Couplings in Double Higgs Production, JHEP 08 (2012) 154 [arXiv:1205.5444] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    M. Gillioz, R. Grober, C. Grojean, M. Muhlleitner and E. Salvioni, Higgs Low-Energy Theorem (and its corrections) in Composite Models, JHEP 10 (2012) 004 [arXiv:1206.7120] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    M. Günaydin and F. Gürsey, Quark structure and octonions, J. Math. Phys. 14 (1973) 1651 [INSPIRE].MATHCrossRefGoogle Scholar
  55. [55]
    J.M. Evans, Supersymmetry algebras and Lorentz invariance for D = 10 super Yang-Mills, Phys. Lett. B 334 (1994) 105 [hep-th/9404190] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    M. Günaydin and S.V. Ketov, Seven sphere and the exceptional N = 7 and N = 8 superconformal algebras, Nucl. Phys. B 467 (1996) 215 [hep-th/9601072] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A Custodial symmetry for Zbb, Phys. Lett. B 641 (2006) 62 [hep-ph/0605341] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    A. De Rujula, S. Glashow and U. Sarid, Charged dark matter, Nucl. Phys. B 333 (1990) 173 [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    S. Dimopoulos, D. Eichler, R. Esmailzadeh and G.D. Starkman, Getting a charge out of dark matter, Phys. Rev. D 41 (1990) 2388 [INSPIRE].ADSGoogle Scholar
  60. [60]
    R.S. Chivukula, A.G. Cohen, S. Dimopoulos and T.P. Walker, Bounds on halo particle interactions from interstellar calorimetry, Phys. Rev. Lett. 65 (1990) 957 [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    A. Gould, B.T. Draine, R.W. Romani and S. Nussinov, Neutron stars: graveyard of charged dark matter, Phys. Lett. B 238 (1990) 337 [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    S.R. Coleman and E.J. Weinberg, Radiative Corrections as the Origin of Spontaneous Symmetry Breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].ADSGoogle Scholar
  63. [63]
    E. Witten, Some Inequalities Among Hadron Masses, Phys. Rev. Lett. 51 (1983) 2351 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  64. [64]
    R. Jackiw, Functional evaluation of the effective potential, Phys. Rev. D 9 (1974) 1686 [INSPIRE].ADSGoogle Scholar
  65. [65]
    S. Weinberg, Precise relations between the spectra of vector and axial vector mesons, Phys. Rev. Lett. 18 (1967) 507 [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    D. Marzocca, M. Serone and J. Shu, General Composite Higgs Models, JHEP 08 (2012) 013 [arXiv:1205.0770] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    A. Pomarol and F. Riva, The Composite Higgs and Light Resonance Connection, JHEP 08 (2012) 135 [arXiv:1205.6434] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    J. Espinosa, C. Grojean and M. Muhlleitner, Composite Higgs under LHC Experimental Scrutiny, EPJ Web Conf. 28 (2012) 08004 [arXiv:1202.1286] [INSPIRE].CrossRefGoogle Scholar
  69. [69]
    G. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The Strongly-Interacting Light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    O. Matsedonskyi, G. Panico and A. Wulzer, Light Top Partners for a Light Composite Higgs, arXiv:1204.6333 [INSPIRE].
  71. [71]
    A. Azatov and J. Galloway, Light Custodians and Higgs Physics in Composite Models, Phys. Rev. D 85 (2012) 055013 [arXiv:1110.5646] [INSPIRE].ADSGoogle Scholar
  72. [72]
    M. Montull and F. Riva, Higgs discovery: the beginning or the end of natural EWSB?, JHEP 11 (2012) 018 [arXiv:1207.1716] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    A. Azatov, R. Contino and J. Galloway, Model-Independent Bounds on a Light Higgs, JHEP 04 (2012) 127 [arXiv:1202.3415] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    J. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, Fingerprinting Higgs Suspects at the LHC, JHEP 05 (2012) 097 [arXiv:1202.3697] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    T. Corbett, O. Eboli, J. Gonzalez-Fraile and M. Gonzalez-Garcia, Constraining anomalous Higgs interactions, Phys. Rev. D 86 (2012) 075013 [arXiv:1207.1344] [INSPIRE].ADSGoogle Scholar
  76. [76]
    D. Carmi, A. Falkowski, E. Kuflik and T. Volansky, Interpreting LHC Higgs Results from Natural New Physics Perspective, JHEP 07 (2012) 136 [arXiv:1202.3144] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    S. Weinberg, The Quantum Theory of Fields (Volume 1), Cambridge University Press, Cambridge, U.K (1995) [ISBN 0521550017].Google Scholar
  78. [78]
    L. Álvarez-Gaumé and P.H. Ginsparg, Geometry anomalies, Nucl. Phys. B 262 (1985) 439 [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    Y. Mambrini, Higgs searches and singlet scalar dark matter: combined constraints from XENON 100 and the LHC, Phys. Rev. D 84 (2011) 115017 [arXiv:1108.0671] [INSPIRE].ADSGoogle Scholar
  80. [80]
    C.E. Yaguna, Gamma rays from the annihilation of singlet scalar dark matter, JCAP 03 (2009) 003 [arXiv:0810.4267] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    V. Silveira and A. Zee, Scalar phantoms, Phys. Lett. B 161 (1985) 136 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  82. [82]
    J. McDonald, Gauge singlet scalars as cold dark matter, Phys. Rev. D 50 (1994) 3637 [hep-ph/0702143] [INSPIRE].ADSGoogle Scholar
  83. [83]
    W.-L. Guo and Y.-L. Wu, The Real singlet scalar dark matter model, JHEP 10 (2010) 083 [arXiv:1006.2518] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  84. [84]
    M. Farina, D. Pappadopulo and A. Strumia, CDMS stands for Constrained Dark Matter Singlet, Phys. Lett. B 688 (2010) 329 [arXiv:0912.5038] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    A. Djouadi, O. Lebedev, Y. Mambrini and J. Quevillon, Implications of LHC searches for Higgs-portal dark matter, Phys. Lett. B 709 (2012) 65 [arXiv:1112.3299] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    C. Burgess, M. Pospelov and T. ter Veldhuis, The Minimal model of nonbaryonic dark matter: a singlet scalar, Nucl. Phys. B 619 (2001) 709 [hep-ph/0011335] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    R. Cerezo, M. Chala and J.M. Lizana, in preparation (2012).Google Scholar
  88. [88]
    CMS collaboration, Search for a W boson decaying to a bottom quark and a top quark in pp collisions at \( \sqrt{s}=7 \) TeV, arXiv:1208.0956 [INSPIRE].
  89. [89]
    CDF collaboration, D. Acosta et al., Search for a W boson decaying to a top and bottom quark pair in 1.8 TeV \( p\overline{p} \) collisions, Phys. Rev. Lett. 90 (2003) 081802 [hep-ex/0209030] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    D0 collaboration, V. Abazov et al., Search for W Boson Resonances Decaying to a Top Quark and a Bottom Quark, Phys. Rev. Lett. 100 (2008) 211803 [arXiv:0803.3256] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].ADSGoogle Scholar
  92. [92]
    CMS collaboration, Search for leptonic decays of W bosons in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 08 (2012) 023 [arXiv:1204.4764] [INSPIRE].ADSGoogle Scholar
  93. [93]
    CMS collaboration, Search for narrow resonances in dilepton mass spectra in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 714 (2012) 158 [arXiv:1206.1849] [INSPIRE].ADSGoogle Scholar
  94. [94]
    ATLAS collaboration, Search for high-mass resonances decaying to dilepton final states in pp collisions at \( \sqrt{s}=7-TeV \) with the ATLAS detector, JHEP 11 (2012) 138 [arXiv:1209.2535] [INSPIRE].ADSGoogle Scholar
  95. [95]
    ATLAS collaboration, ATLAS search for a heavy gauge boson decaying to a charged lepton and a neutrino in pp collisions at \( \sqrt{s}=7 \) TeV, arXiv:1209.4446 [INSPIRE].
  96. [96]
    CMS collaboration, Search for Resonances in the Dijet Mass Spectrum from 7 TeV pp Collisions at CMS, Phys. Lett. B 704 (2011) 123 [arXiv:1107.4771] [INSPIRE].ADSGoogle Scholar
  97. [97]
    ATLAS collaboration, Search for New Physics in the Dijet Mass Distribution using 1 fb −1 of pp Collision Data at \( \sqrt{s}=7 \) TeV collected by the ATLAS Detector, Phys. Lett. B 708 (2012) 37 [arXiv:1108.6311] [INSPIRE].ADSGoogle Scholar
  98. [98]
    R. Barcelo, A. Carmona, M. Masip and J. Santiago, Stealth gluons at hadron colliders, Phys. Lett. B 707 (2012) 88 [arXiv:1106.4054] [INSPIRE].ADSCrossRefGoogle Scholar
  99. [99]
    A. Cagil and H. Dag, Pair production of single and double charged scalar pairs and their lepton flavor violating signals in the littlest Higgs model at LHC, arXiv:1203.2232 [INSPIRE].
  100. [100]
    K. Huitu, J. Laitinen, J. Maalampi and N. Romanenko, Singly charged Higgses at linear collider, Nucl. Phys. B 598 (2001) 13 [hep-ph/0006261] [INSPIRE].ADSCrossRefGoogle Scholar
  101. [101]
    A. Akeroyd and H. Sugiyama, Production of doubly charged scalars from the decay of singly charged scalars in the Higgs Triplet Model, Phys. Rev. D 84 (2011) 035010 [arXiv:1105.2209] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.CAFPE and Departamento de Física Teórica y del CosmosUniversidad de GranadaGranadaSpain

Personalised recommendations