Advertisement

Journal of High Energy Physics

, 2013:110 | Cite as

Ungauging black holes and hidden supercharges

  • Kiril Hristov
  • Stefanos KatmadasEmail author
  • Valentina Pozzoli
Open Access
Article

Abstract

We embed the general solution for non-BPS extremal asymptotically flat static and under-rotating black holes in abelian gauged D = 4 \( \mathcal{N}=2 \) supergravity, in the limit where the scalar potential vanishes but the gauging does not. Using this result, we show explicitly that some supersymmetries are preserved in the near horizon region of all the asymptotically flat solutions above, in the gauged theory. This reveals a deep relation between microscopic entropy counting of extremal black holes in Minkowski and BPS black holes in AdS. Finally, we discuss the relevance of this construction to the structure of asymptotically AdS4 black holes, as well as the possibility of including hypermultiplets.

Keywords

Black Holes Supergravity Models 

References

  1. [1]
    A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].MathSciNetADSGoogle Scholar
  2. [2]
    J.M. Maldacena, A. Strominger and E. Witten, Black hole entropy in M-theory, JHEP 12 (1997) 002 [hep-th/9711053] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    K. Behrndt, D. Lüst and W.A. Sabra, Stationary solutions of N = 2 supergravity, Nucl. Phys. B 510 (1998) 264 [hep-th/9705169] [INSPIRE].ADSGoogle Scholar
  4. [4]
    F. Denef, Supergravity flows and D-brane stability, JHEP 08 (2000) 050 [hep-th/0005049] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    J.P. Gauntlett, J.B. Gutowski, C.M. Hull, S. Pakis and H.S. Reall, All supersymmetric solutions of minimal supergravity in five dimensions, Class. Quant. Grav. 20 (2003) 4587 [hep-th/0209114] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. [6]
    R.R. Khuri and T. Ortín, A nonsupersymmetric dyonic extreme Reissner-Nordstrom black hole, Phys. Lett. B 373 (1996) 56 [hep-th/9512178] [INSPIRE].ADSGoogle Scholar
  7. [7]
    D. Rasheed, The rotating dyonic black holes of Kaluza-Klein theory, Nucl. Phys. B 454 (1995) 379 [hep-th/9505038] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    T. Ortín, Extremality versus supersymmetry in stringy black holes, Phys. Lett. B 422 (1998) 93 [hep-th/9612142] [INSPIRE].ADSGoogle Scholar
  9. [9]
    F. Larsen, Rotating Kaluza-Klein black holes, Nucl. Phys. B 575 (2000) 211 [hep-th/9909102] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    G. Lopes Cardoso, A. Ceresole, G. Dall’Agata, J.M. Oberreuter and J. Perz, First-order flow equations for extremal black holes in very special geometry, JHEP 10 (2007) 063 [arXiv:0706.3373] [INSPIRE].CrossRefGoogle Scholar
  11. [11]
    E.G. Gimon, F. Larsen and J. Simon, Black Holes in Supergravity: the non-BPS branch, JHEP 01 (2008) 040 [arXiv:0710.4967] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    K. Goldstein and S. Katmadas, Almost BPS black holes, JHEP 05 (2009) 058 [arXiv:0812.4183] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    G. Bossard, H. Nicolai and K. Stelle, Universal BPS structure of stationary supergravity solutions, JHEP 07 (2009) 003 [arXiv:0902.4438] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    I. Bena, G. Dall’Agata, S. Giusto, C. Ruef and N.P. Warner, Non-BPS Black Rings and Black Holes in Taub-NUT, JHEP 06 (2009) 015 [arXiv:0902.4526] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    G. Bossard and H. Nicolai, Multi-black holes from nilpotent Lie algebra orbits, Gen. Rel. Grav. 42 (2010) 509 [arXiv:0906.1987] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  16. [16]
    I. Bena, S. Giusto, C. Ruef and N.P. Warner, Multi-Center non-BPS Black Holes: the Solution, JHEP 11 (2009) 032 [arXiv:0908.2121] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    G. Bossard, Extremal black holes and nilpotent orbits, arXiv:0910.0689 [INSPIRE].
  18. [18]
    I. Bena, S. Giusto, C. Ruef and N.P. Warner, Supergravity Solutions from Floating Branes, JHEP 03 (2010) 047 [arXiv:0910.1860] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    G. Bossard and C. Ruef, Interacting non-BPS black holes, Gen. Rel. Grav. 44 (2012) 21 [arXiv:1106.5806] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  20. [20]
    G. Bossard and S. Katmadas, Duality covariant non-BPS first order systems, JHEP 09 (2012) 100 [arXiv:1205.5461] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    A. Ceresole and G. Dall’Agata, Flow Equations for Non-BPS Extremal Black Holes, JHEP 03 (2007) 110 [hep-th/0702088] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    S. Bellucci, S. Ferrara, A. Marrani and A. Yeranyan, STU Black Holes Unveiled, Entropy 10 (2008) 507 [arXiv:0807.3503] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  23. [23]
    A. Ceresole, G. Dall’Agata, S. Ferrara and A. Yeranyan, Universality of the superpotential for D = 4 extremal black holes, Nucl. Phys. B 832 (2010) 358 [arXiv:0910.2697] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    A. Ceresole, G. Dall’Agata, S. Ferrara and A. Yeranyan, First order flows for \( \mathcal{N}=2 \) extremal black holes and duality invariants, Nucl. Phys. B 824 (2010) 239 [arXiv:0908.1110] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    G. Bossard, Y. Michel and B. Pioline, Extremal black holes, nilpotent orbits and the true fake superpotential, JHEP 01 (2010) 038 [arXiv:0908.1742] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    M.M. Caldarelli and D. Klemm, Supersymmetry of Anti-de Sitter black holes, Nucl. Phys. B 545 (1999) 434 [hep-th/9808097] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    W. Sabra, Anti-de Sitter BPS black holes in N = 2 gauged supergravity, Phys. Lett. B 458 (1999) 36 [hep-th/9903143] [INSPIRE].MathSciNetADSGoogle Scholar
  28. [28]
    S.L. Cacciatori and D. Klemm, Supersymmetric AdS 4 black holes and attractors, JHEP 01 (2010) 085 [arXiv:0911.4926] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    G. Dall’Agata and A. Gnecchi, Flow equations and attractors for black holes in N = 2 U(1) gauged supergravity, JHEP 03 (2011) 037 [arXiv:1012.3756] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    K. Hristov and S. Vandoren, Static supersymmetric black holes in AdS 4 with spherical symmetry, JHEP 04 (2011) 047 [arXiv:1012.4314] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    D. Klemm and O. Vaughan, Nonextremal black holes in gauged supergravity and the real formulation of special geometry, arXiv:1207.2679 [INSPIRE].
  32. [32]
    C. Toldo and S. Vandoren, Static nonextremal AdS 4 black hole solutions, JHEP 09 (2012) 048 [arXiv:1207.3014] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    M. Berkooz, D. Reichmann and J. Simon, A Fermi Surface Model for Large Supersymmetric AdS 5 Black Holes, JHEP 01 (2007) 048 [hep-th/0604023] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    J. Kinney, J.M. Maldacena, S. Minwalla and S. Raju, An index for 4 dimensional super conformal theories, Commun. Math. Phys. 275 (2007) 209 [hep-th/0510251] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  35. [35]
    S. Bellucci, S. Ferrara, A. Marrani and A. Yeranyan, D = 4 Black Hole Attractors in N = 2 Supergravity with Fayet-Iliopoulos Terms, Phys. Rev. D 77 (2008) 085027 [arXiv:0802.0141] [INSPIRE].MathSciNetADSGoogle Scholar
  36. [36]
    R. Kallosh, N. Sivanandam and M. Soroush, Exact Attractive Non-BPS STU Black Holes, Phys. Rev. D 74 (2006) 065008 [hep-th/0606263] [INSPIRE].MathSciNetADSGoogle Scholar
  37. [37]
    P.K. Tripathy and S.P. Trivedi, Non-supersymmetric attractors in string theory, JHEP 03 (2006) 022 [hep-th/0511117] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    K. Goldstein, N. Iizuka, R.P. Jena and S.P. Trivedi, Non-supersymmetric attractors, Phys. Rev. D 72 (2005) 124021 [hep-th/0507096] [INSPIRE].MathSciNetADSGoogle Scholar
  39. [39]
    A. Sen, Black hole entropy function and the attractor mechanism in higher derivative gravity, JHEP 09 (2005) 038 [hep-th/0506177] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    S. Nampuri, P.K. Tripathy and S.P. Trivedi, On The Stability of Non-Supersymmetric Attractors in String Theory, JHEP 08 (2007) 054 [arXiv:0705.4554] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    S. Ferrara and A. Marrani, On the Moduli Space of non-BPS Attractors for N = 2 Symmetric Manifolds, Phys. Lett. B 652 (2007) 111 [arXiv:0706.1667] [INSPIRE].MathSciNetADSGoogle Scholar
  42. [42]
    K. Hristov, Lessons from the Vacuum Structure of 4d N = 2 Supergravity, arXiv:1207.3830 [INSPIRE].
  43. [43]
    B. de Wit and M. van Zalk, Electric and magnetic charges in N = 2 conformal supergravity theories, JHEP 10 (2011) 050 [arXiv:1107.3305] [INSPIRE].CrossRefGoogle Scholar
  44. [44]
    K. Hristov, C. Toldo and S. Vandoren, On BPS bounds in D = 4 N = 2 gauged supergravity, JHEP 12 (2011) 014 [arXiv:1110.2688] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    B. de Wit and A. Van Proeyen, Potentials and Symmetries of General Gauged N = 2 Supergravity: Yang-Mills Models, Nucl. Phys. B 245 (1984) 89 [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    B. de Wit, P. Lauwers and A. Van Proeyen, Lagrangians of N = 2 Supergravity - Matter Systems, Nucl. Phys. B 255 (1985) 569 [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    E. Cremmer et al., Vector Multiplets Coupled to N = 2 Supergravity: SuperHiggs Effect, Flat Potentials and Geometric Structure, Nucl. Phys. B 250 (1985) 385 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    D. Astefanesei, K. Goldstein, R.P. Jena, A. Sen and S.P. Trivedi, Rotating attractors, JHEP 10 (2006) 058 [hep-th/0606244] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  49. [49]
    B. de Wit, H. Samtleben and M. Trigiante, Magnetic charges in local field theory, JHEP 09 (2005) 016 [hep-th/0507289] [INSPIRE].CrossRefGoogle Scholar
  50. [50]
    A. Ceresole, S. Ferrara and A. Marrani, Small N = 2 Extremal Black Holes in Special Geometry, Phys. Lett. B 693 (2010) 366 [arXiv:1006.2007] [INSPIRE].MathSciNetADSGoogle Scholar
  51. [51]
    L. Borsten, M. Duff, S. Ferrara, A. Marrani and W. Rubens, Small Orbits, Phys. Rev. D 85 (2012) 086002 [arXiv:1108.0424] [INSPIRE].ADSGoogle Scholar
  52. [52]
    P. Galli, K. Goldstein, S. Katmadas and J. Perz, First-order flows and stabilisation equations for non-BPS extremal black holes, JHEP 06 (2011) 070 [arXiv:1012.4020] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  53. [53]
    G. Bossard, Octonionic black holes, JHEP 05 (2012) 113 [arXiv:1203.0530] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    L. Andrianopoli, M. Bertolini, A. Ceresole, R. D’Auria, S. Ferrara, et al., N=2 supergravity and N = 2 super Yang-Mills theory on general scalar manifolds: symplectic covariance, gaugings and the momentum map, J. Geom. Phys. 23 (1997) 111 [hep-th/9605032] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  55. [55]
    A. Ceresole, R. D’Auria and S. Ferrara, The symplectic structure of N = 2 supergravity and its central extension, Nucl. Phys. Proc. Suppl. 46 (1996) 67 [hep-th/9509160] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  56. [56]
    R. Kallosh and T. Ortín, Killing spinor identities, hep-th/9306085 [INSPIRE].
  57. [57]
    K. Hristov, H. Looyestijn and S. Vandoren, BPS black holes in N = 2 D = 4 gauged supergravities, JHEP 08 (2010) 103 [arXiv:1005.3650] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  58. [58]
    K. Hristov, H. Looyestijn and S. Vandoren, Maximally supersymmetric solutions of D = 4 N = 2 gauged supergravity, JHEP 11 (2009) 115 [arXiv:0909.1743] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  59. [59]
    J. Louis, P. Smyth and H. Triendl, Supersymmetric Vacua in N = 2 Supergravity, JHEP 08 (2012) 039 [arXiv:1204.3893] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    K. Hristov, On BPS Bounds in D = 4 N = 2 Gauged Supergravity II: General Matter couplings and Black Hole Masses, JHEP 03 (2012) 095 [arXiv:1112.4289] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    S. Ferrara, R. Kallosh and A. Strominger, N=2 extremal black holes, Phys. Rev. D 52 (1995) 5412 [hep-th/9508072] [INSPIRE].MathSciNetADSGoogle Scholar
  62. [62]
    A. Strominger, Macroscopic entropy of N = 2 extremal black holes, Phys. Lett. B 383 (1996) 39 [hep-th/9602111] [INSPIRE].MathSciNetADSGoogle Scholar
  63. [63]
    S. Ferrara and R. Kallosh, Supersymmetry and attractors, Phys. Rev. D 54 (1996) 1514 [hep-th/9602136] [INSPIRE].MathSciNetADSGoogle Scholar
  64. [64]
    D. Cassani, P. Koerber and O. Varela, All homogeneous N = 2 M-theory truncations with supersymmetric AdS4 vacua, JHEP 11 (2012) 173 [arXiv:1208.1262] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    D. Klemm and E. Zorzan, The timelike half-supersymmetric backgrounds of N = 2, D = 4 supergravity with Fayet-Iliopoulos gauging, Phys. Rev. D 82 (2010) 045012 [arXiv:1003.2974] [INSPIRE].ADSGoogle Scholar
  66. [66]
    L. Andrianopoli, R. D’Auria, S. Ferrara and M. Lledó, Gauging of flat groups in four-dimensional supergravity, JHEP 07 (2002) 010 [hep-th/0203206] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    O. Aharony, M. Berkooz, J. Louis and A. Micu, Non-Abelian structures in compactifications of M-theory on seven-manifolds with SU(3) structure, JHEP 09 (2008) 108 [arXiv:0806.1051] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  68. [68]
    H. Looyestijn, E. Plauschinn and S. Vandoren, New potentials from Scherk-Schwarz reductions, JHEP 12 (2010) 016 [arXiv:1008.4286] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  69. [69]
    S. Cecotti, S. Ferrara and L. Girardello, Geometry of Type II Superstrings and the Moduli of Superconformal Field Theories, Int. J. Mod. Phys. A 4 (1989) 2475 [INSPIRE].MathSciNetADSGoogle Scholar
  70. [70]
    J. Louis, P. Smyth and H. Triendl, Spontaneous N = 2 to N = 1 Supersymmetry Breaking in Supergravity and Type II String Theory, JHEP 02 (2010) 103 [arXiv:0911.5077] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  71. [71]
    I. Bena, H. Triendl and B. Vercnocke, Camouflaged supersymmetry in solutions of extended supergravities, Phys. Rev. D 86 (2012) 061701 [arXiv:1111.2601] [INSPIRE].ADSGoogle Scholar
  72. [72]
    I. Bena, H. Triendl and B. Vercnocke, Black Holes and Fourfolds, JHEP 08 (2012) 124 [arXiv:1206.2349] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    R. Emparan and G.T. Horowitz, Microstates of a Neutral Black Hole in M-theory, Phys. Rev. Lett. 97 (2006) 141601 [hep-th/0607023] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    R. Emparan and A. Maccarrone, Statistical description of rotating Kaluza-Klein black holes, Phys. Rev. D 75 (2007) 084006 [hep-th/0701150] [INSPIRE].MathSciNetADSGoogle Scholar
  75. [75]
    H.S. Reall, Counting the microstates of a vacuum black ring, JHEP 05 (2008) 013 [arXiv:0712.3226] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  76. [76]
    G.T. Horowitz and M.M. Roberts, Counting the Microstates of a Kerr Black Hole, Phys. Rev. Lett. 99 (2007) 221601 [arXiv:0708.1346] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  77. [77]
    E.G. Gimon, F. Larsen and J. Simon, Constituent Model of Extremal non-BPS Black Holes, JHEP 07 (2009) 052 [arXiv:0903.0719] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  78. [78]
    A. Dabholkar, A. Sen and S.P. Trivedi, Black hole microstates and attractor without supersymmetry, JHEP 01 (2007) 096 [hep-th/0611143] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  79. [79]
    D. Astefanesei, K. Goldstein and S. Mahapatra, Moduli and (un)attractor black hole thermodynamics, Gen. Rel. Grav. 40 (2008) 2069 [hep-th/0611140] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  80. [80]
    I. Bena, M. Guica and W. Song, Un-twisting the NHEK with spectral flows, arXiv:1203.4227 [INSPIRE].
  81. [81]
    P. Galli, T. Ortín, J. Perz and C.S. Shahbazi, Non-extremal black holes of N = 2, D = 4 supergravity, JHEP 07 (2011) 041 [arXiv:1105.3311] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    P. Breitenlohner, D. Maison and G.W. Gibbons, Four-Dimensional Black Holes from Kaluza-Klein Theories, Commun. Math. Phys. 120 (1988) 295 [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  83. [83]
    S.L. Cacciatori, D. Klemm, D.S. Mansi and E. Zorzan, All timelike supersymmetric solutions of N = 2, D = 4 gauged supergravity coupled to abelian vector multiplets, JHEP 05 (2008) 097 [arXiv:0804.0009] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  84. [84]
    A. Van Proeyen and B. Vercnocke, Effective action for the field equations of charged black holes, Class. Quant. Grav. 25 (2008) 035010 [arXiv:0708.2829] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA 2013

Authors and Affiliations

  • Kiril Hristov
    • 1
  • Stefanos Katmadas
    • 2
    Email author
  • Valentina Pozzoli
    • 2
  1. 1.Dipartimento di FisicaUniversitá di Milano-BicoccaMilanoItaly
  2. 2.Centre de Physique Théorique, École Polytechnique, CNRSPalaiseauFrance

Personalised recommendations