Advertisement

Journal of High Energy Physics

, 2013:109 | Cite as

On loops in inflation II: IR effects in single clock inflation

  • Leonardo SenatoreEmail author
  • Matias Zaldarriaga
Open Access
Article

Abstract

In single clock models of inflation the coupling between modes of very different scales does not have any significant dynamical effect during inflation. It leads to interesting projection effects. Larger and smaller modes change the relation between the scale a mode of interest will appear in the post-inflationary universe and will also change the time of horizon crossing of that mode. We argue that there are no infrared projection effects in physical questions, that there are no effects from modes of longer wavelength than the one of interest at the time of reheating. These potential effects cancel when computing fluctuations as a function of physically measurable scales. Modes on scales smaller than the one of interest change the mapping between horizon crossing time and scale. The correction to the mapping computed in the absence of fluctuations is enhanced by a factor N e, the number of e-folds of inflation between horizon crossing and reheating. The new mapping is stochastic in nature but its variance is not enhanced by N e.

Keywords

Cosmology of Theories beyond the SM Gauge Symmetry Space-Time Symmetries Renormalization Regularization and Renormalons 

References

  1. [1]
    L. Senatore and M. Zaldarriaga, On loops in inflation, JHEP 12 (2010) 008 [arXiv:0912.2734] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    S. Weinberg, Quantum contributions to cosmological correlations, Phys. Rev. D 72 (2005) 043514 [hep-th/0506236] [INSPIRE].MathSciNetADSGoogle Scholar
  3. [3]
    S. Weinberg, Quantum contributions to cosmological correlations. II. Can these corrections become large?, Phys. Rev. D 74 (2006) 023508 [hep-th/0605244] [INSPIRE].MathSciNetADSGoogle Scholar
  4. [4]
    E. Kahya, V. Onemli and R. Woodard, The zeta-zeta correlator is time dependent, Phys. Lett. B 694 (2010) 101 [arXiv:1006.3999] [INSPIRE].ADSGoogle Scholar
  5. [5]
    S.B. Giddings and M.S. Sloth, Semiclassical relations and IR effects in de Sitter and slow-roll space-times, JCAP 01 (2011) 023 [arXiv:1005.1056] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    C.T. Byrnes, M. Gerstenlauer, A. Hebecker, S. Nurmi and G. Tasinato, Inflationary infrared divergences: geometry of the reheating surface versus δN formalism, JCAP 08 (2010) 006 [arXiv:1005.3307] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    M. Gerstenlauer, A. Hebecker and G. Tasinato, Inflationary correlation functions without infrared divergences, JCAP 06 (2011) 021 [arXiv:1102.0560] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    S.B. Giddings and M.S. Sloth, Cosmological observables, IR growth of fluctuations and scale-dependent anisotropies, Phys. Rev. D 84 (2011) 063528 [arXiv:1104.0002] [INSPIRE].ADSGoogle Scholar
  9. [9]
    S.B. Giddings and M.S. Sloth, Fluctuating geometries, q-observables and infrared growth in inflationary spacetimes, Phys. Rev. D 86 (2012) 083538 [arXiv:1109.1000] [INSPIRE].ADSGoogle Scholar
  10. [10]
    G. Pimentel, L. Senatore and M. Zaldarriaga, On loops in inflation III: time-independence of ζ correlators, to appear.Google Scholar
  11. [11]
    D. Chialva and A. Mazumdar, Eliminating infrared divergences in an inflationary cosmology, arXiv:1103.1312 [INSPIRE].
  12. [12]
    T. Tanaka and Y. Urakawa, Dominance of gauge artifact in the consistency relation for the primordial bispectrum, JCAP 05 (2011) 014 [arXiv:1103.1251] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    Y. Urakawa and T. Tanaka, Natural selection of inflationary vacuum required by infra-red regularity and gauge-invariance, Prog. Theor. Phys. 125 (2011) 1067 [arXiv:1009.2947] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  14. [14]
    Y. Urakawa, Influence of gauge artifact on adiabatic and entropy perturbations during inflation, Prog. Theor. Phys. 126 (2011) 961 [arXiv:1105.1078] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  15. [15]
    A. Riotto and M.S. Sloth, The probability equation for the cosmological comoving curvature perturbation, JCAP 10 (2011) 003 [arXiv:1103.5876] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    J. Ganc and E. Komatsu, A new method for calculating the primordial bispectrum in the squeezed limit, JCAP 12 (2010) 009 [arXiv:1006.5457] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    P. Creminelli, G. D’Amico, M. Musso and J. Norena, The (not so) squeezed limit of the primordial 3-point function, JCAP 11 (2011) 038 [arXiv:1106.1462] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    C. Cheung, P. Creminelli, A.L. Fitzpatrick, J. Kaplan and L. Senatore, The effective field theory of inflation, JHEP 03 (2008) 014 [arXiv:0709.0293] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    D. Lopez Nacir, R.A. Porto, L. Senatore and M. Zaldarriaga, Dissipative effects in the effective field theory of inflation, JHEP 01 (2012) 075 [arXiv:1109.4192] [INSPIRE].CrossRefGoogle Scholar
  20. [20]
    D. Green, B. Horn, L. Senatore and E. Silverstein, Trapped inflation, Phys. Rev. D 80 (2009) 063533 [arXiv:0902.1006] [INSPIRE].ADSGoogle Scholar
  21. [21]
    L. Senatore, E. Silverstein and M. Zaldarriaga, New sources of gravitational waves during inflation, arXiv:1109.0542 [INSPIRE].
  22. [22]
    D. Baumann, A. Nicolis, L. Senatore and M. Zaldarriaga, Cosmological non-linearities as an effective fluid, JCAP 07 (2012) 051 [arXiv:1004.2488] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    J.J.M. Carrasco, M.P. Hertzberg and L. Senatore, The effective field theory of cosmological large scale structures, JHEP 09 (2012) 082 [arXiv:1206.2926] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    P. Creminelli, S. Dubovsky, A. Nicolis, L. Senatore and M. Zaldarriaga, The phase transition to slow-roll eternal inflation, JHEP 09 (2008) 036 [arXiv:0802.1067] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    S. Dubovsky, L. Senatore and G. Villadoro, The volume of the universe after inflation and de Sitter entropy, JHEP 04 (2009) 118 [arXiv:0812.2246] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    S. Dubovsky, L. Senatore and G. Villadoro, Universality of the volume bound in slow-roll eternal inflation, JHEP 05 (2012) 035 [arXiv:1111.1725] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    M. Lewandowski, A. Perko, L. Senatore and G. Villadoro, The volume of the universe after slow-roll corrections and its universal bound, in preparation.Google Scholar

Copyright information

© SISSA 2013

Authors and Affiliations

  1. 1.Stanford Institute for Theoretical PhysicsStanford UniversityStanfordU.S.A
  2. 2.Kavli Institute for Particle Astrophysics and CosmologyStanford University and SLACMenlo ParkU.S.A
  3. 3.School of Natural Sciences, Institute for Advanced StudyPrincetonU.S.A

Personalised recommendations