Advertisement

Classification of symmetric toroidal orbifolds

  • Maximilian Fischer
  • Michael Ratz
  • Jesús Torrado
  • Patrick K.S. Vaudrevange
Open Access
Article

Abstract

We provide a complete classification of six-dimensional symmetric toroidal orbifolds which yield \( \mathcal{N}\geq 1 \) supersymmetry in 4D for the heterotic string. Our strategy is based on a classification of crystallographic space groups in six dimensions. We find in total 520 inequivalent toroidal orbifolds, 162 of them with Abelian point groups such as \( {{\mathbb{Z}}_3},{{\mathbb{Z}}_4},{{\mathbb{Z}}_6}\hbox{-}\mathrm{I} \) etc. and 358 with non-Abelian point groups such as S 3, D 4, A 4 etc. We also briefly explore the properties of some orbifolds with Abelian point groups and \( \mathcal{N}=1 \), i.e. specify the Hodge numbers and comment on the possible mechanisms (local or non-local) of gauge symmetry breaking.

Keywords

Superstrings and Heterotic Strings Superstring Vacua 

References

  1. [1]
    L.J. Dixon, J.A. Harvey, C. Vafa and E. Witten, Strings on Orbifolds, Nucl. Phys. B 261 (1985) 678 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    L.J. Dixon, J.A. Harvey, C. Vafa and E. Witten, Strings on Orbifolds. 2., Nucl. Phys. B 274 (1986) 285 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    L.E. Ibáñez, J.E. Kim, H.P. Nilles and F. Quevedo, Orbifold Compactifications with Three Families of SU(3) × SU(2) × U (1)n, Phys. Lett. B 191 (1987) 282 [INSPIRE].ADSGoogle Scholar
  4. [4]
    W. Buchmüller, K. Hamaguchi, O. Lebedev and M. Ratz, Supersymmetric standard model from the heterotic string, Phys. Rev. Lett. 96 (2006) 121602 [hep-ph/0511035] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    H.P. Nilles, S. Ramos-Sanchez, M. Ratz and P.K. Vaudrevange, From strings to the MSSM, Eur. Phys. J. C 59 (2009) 249 [arXiv:0806.3905] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    T. Kobayashi and N. Ohtsubo, Geometrical aspects of Z(N) orbifold phenomenology, Int. J. Mod. Phys. A 9 (1994) 87 [INSPIRE].MathSciNetADSGoogle Scholar
  7. [7]
    S. Förste, H.P. Nilles, P.K. Vaudrevange and A. Wingerter, Heterotic brane world, Phys. Rev. D 70 (2004) 106008 [hep-th/0406208] [INSPIRE].ADSGoogle Scholar
  8. [8]
    W. Buchmüller, K. Hamaguchi, O. Lebedev and M. Ratz, Supersymmetric Standard Model from the Heterotic String (II), Nucl. Phys. B 785 (2007) 149 [hep-th/0606187] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    D. Bailin and A. Love, Orbifold compactifications of string theory, Phys. Rept. 315 (1999) 285 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    R. Donagi and K. Wendland, On orbifolds and free fermion constructions, J. Geom. Phys. 59 (2009) 942 [arXiv:0809.0330] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  11. [11]
    S. Förste, T. Kobayashi, H. Ohki and K.-j. Takahashi, Non-Factorisable Z(2) times Z(2) Heterotic Orbifold Models and Yukawa Couplings, JHEP 03 (2007) 011 [hep-th/0612044] [INSPIRE].CrossRefGoogle Scholar
  12. [12]
    J. Dillies, Toroidal orbifolds a la Vafa-Witten, Adv. Theor. Math. Phys. 11 (2007) 683 [math/0609714] [INSPIRE].MathSciNetMATHGoogle Scholar
  13. [13]
    H. Brown, R. Bulow, J. Neubuser, H. Wondratschek and H. Zassenhaus, Crystallographic groups of four-dimensional space, Wiley (1978).Google Scholar
  14. [14]
    P. Candelas, G.T. Horowitz, A. Strominger and E. Witten, Vacuum Configurations for Superstrings, Nucl. Phys. B 258 (1985) 46 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    J. Opgenorth, W. Plesken and T. Schulz, Crystallographic Algorithms and Tables, Acta Cryst. A 54 (1998) 517.MathSciNetGoogle Scholar
  16. [16]
    W. Plesken, The carat computer package, http://wwwb.math.rwth-aachen.de/carat/index.html, (2008).
  17. [17]
    GAP Group, GAPGroups, Algorithms, and Programming, Version 4.5.5 (2012).Google Scholar
  18. [18]
    V. Dabbaghian-Abdoly, Repsn - A Package for Constructing Representations of Finite Groups (2004).Google Scholar
  19. [19]
    S. Konopka, Non-Abelian orbifold compactifications of the heterotic string, Diploma Thesis, Techische Universität München (2011) [http://einrichtungen.ph.tum.de/T30e/research/theses/KonopkaDiplomarbeit.pdf].
  20. [20]
    L.E. Ibáñez, H.P. Nilles and F. Quevedo, Orbifolds and Wilson Lines, Phys. Lett. B 187 (1987) 25 [INSPIRE].ADSGoogle Scholar
  21. [21]
    C. Vafa, Modular Invariance and Discrete Torsion on Orbifolds, Nucl. Phys. B 273 (1986) 592 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    A. Font, L.E. Ibáñez and F. Quevedo, Z(N) × Z(M) orbifolds and discrete torsion, Phys. Lett. B 217 (1989) 272 [INSPIRE].ADSGoogle Scholar
  23. [23]
    C. Vafa and E. Witten, On orbifolds with discrete torsion, J. Geom. Phys. 15 (1995) 189 [hep-th/9409188] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  24. [24]
    E.R. Sharpe, Discrete torsion, Phys. Rev. D 68 (2003) 126003 [hep-th/0008154] [INSPIRE].MathSciNetADSGoogle Scholar
  25. [25]
    M.R. Gaberdiel and P. Kaste, Generalized discrete torsion and mirror symmetry for G 2 manifolds, JHEP 08 (2004) 001 [hep-th/0401125] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    F. Plöger, S. Ramos-Sánchez, M. Ratz and P.K. Vaudrevange, Mirage Torsion, JHEP 04 (2007) 063 [hep-th/0702176] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    G. Cleaver, A. Faraggi and D.V. Nanopoulos, String derived MSSM and M-theory unification, Phys. Lett. B 455 (1999) 135 [hep-ph/9811427] [INSPIRE].MathSciNetADSGoogle Scholar
  28. [28]
    M. Blaszczyk et al., A Z 2 × Z 2 standard model, Phys. Lett. B 683 (2010) 340 [arXiv:0911.4905] [INSPIRE].MathSciNetADSGoogle Scholar
  29. [29]
    R. Kappl et al., String-Derived MSSM Vacua with Residual R Symmetries, Nucl. Phys. B 847 (2011) 325 [arXiv:1012.4574] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    H.P. Nilles, S. Ramos-Sánchez, P.K. Vaudrevange and A. Wingerter, The Orbifolder: A Tool to study the Low Energy Effective Theory of Heterotic Orbifolds, Comput. Phys. Commun. 183 (2012) 1363 [arXiv:1110.5229] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    T. Kimura, M. Ohta and K.-J. Takahashi, Type IIA orientifolds and orbifolds on non-factorizable tori, Nucl. Phys. B 798 (2008) 89 [arXiv:0712.2281] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    R. Donagi and A.E. Faraggi, On the number of chiral generations in Z 2 × Z 2 orbifolds, Nucl. Phys. B 694 (2004) 187 [hep-th/0403272] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    S. Ramos-Sánchez, Towards Low Energy Physics from the Heterotic String, Fortsch. Phys. 10 (2009) 907 [arXiv:0812.3560] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    R. Brown and P.J. Higgins, The fundamental groupoid of the quotient of a Hausdorff space by a discontinuous action of a discrete group is the orbit groupoid of the induced action, math/0212271.
  35. [35]
    Z. Kakushadze, G. Shiu and S.H. Tye, Asymmetric nonAbelian orbifolds and model building, Phys. Rev. D 54 (1996) 7545 [hep-th/9607137] [INSPIRE].MathSciNetADSGoogle Scholar
  36. [36]
    T. Muto, D-branes on three-dimensional nonAbelian orbifolds, JHEP 02 (1999) 008 [hep-th/9811258] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    P.H. Frampton and T.W. Kephart, Classification of conformality models based on nonAbelian orbifolds, Phys. Rev. D 64 (2001) 086007 [hep-th/0011186] [INSPIRE].MathSciNetADSGoogle Scholar
  38. [38]
    S. Dulat and K. Wendland, Crystallographic orbifolds: Towards a classification of unitary conformal field theories with central charge c = 2, JHEP 06 (2000) 012 [hep-th/0002227] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    O. Lebedev, H.P. Nilles, S. Ramos-Sánchez, M. Ratz and P.K. Vaudrevange, Heterotic mini-landscape. (II). Completing the search for MSSM vacua in a Z(6) orbifold, Phys. Lett. B 668 (2008) 331 [arXiv:0807.4384] [INSPIRE].ADSGoogle Scholar
  40. [40]
    V. Bouchard and R. Donagi, An SU(5) heterotic standard model, Phys. Lett. B 633 (2006) 783 [hep-th/0512149] [INSPIRE].MathSciNetADSGoogle Scholar
  41. [41]
    V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, A Heterotic standard model, Phys. Lett. B 618 (2005) 252 [hep-th/0501070] [INSPIRE].MathSciNetADSGoogle Scholar
  42. [42]
    V. Braun, P. Candelas, R. Davies and R. Donagi, The MSSM Spectrum from (0, 2)-Deformations of the Heterotic Standard Embedding, JHEP 05 (2012) 127 [arXiv:1112.1097] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    L.B. Anderson, J. Gray, A. Lukas and E. Palti, Heterotic Line Bundle Standard Models, JHEP 06 (2012) 113 [arXiv:1202.1757] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    A. Hebecker and M. Trapletti, Gauge unification in highly anisotropic string compactifications, Nucl. Phys. B 713 (2005) 173 [hep-th/0411131] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    A. Anandakrishnan and S. Raby, SU(6) GUT Breaking on a Projective Plane, arXiv:1205.1228 [INSPIRE].
  46. [46]
    R.H. Brandenberger and C. Vafa, Superstrings in the Early Universe, Nucl. Phys. B 316 (1989) 391 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  47. [47]
    C. Hull, A Geometry for non-geometric string backgrounds, JHEP 10 (2005) 065 [hep-th/0406102] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    C. Condeescu, I. Florakis and D. Lüst, Asymmetric Orbifolds, Non-Geometric Fluxes and Non-Commutativity in Closed String Theory, JHEP 04 (2012) 121 [arXiv:1202.6366] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    F. Gmeiner, R. Blumenhagen, G. Honecker, D. Lüst and T. Weigand, One in a billion: MSSM-like D-brane statistics, JHEP 01 (2006) 004 [hep-th/0510170] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    M.R. Douglas and W. Taylor, The Landscape of intersecting brane models, JHEP 01 (2007) 031 [hep-th/0606109] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  51. [51]
    F. Gmeiner and G. Honecker, Millions of Standard Models on \( Z_6^{\prime } \) ?, JHEP 07 (2008) 052 [arXiv:0806.3039] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  52. [52]
    R. Blumenhagen, B. Körs, D. Lüst and S. Stieberger, Four-dimensional String Compactifications with D-branes, Orientifolds and Fluxes, Phys. Rept. 445 (2007) 1 [hep-th/0610327] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    W. Plesken and W. Hanrath, The lattices of six-dimensional Euclidean space, Math. Comp. 43 (1984) 573.MathSciNetMATHCrossRefGoogle Scholar
  54. [54]
    A.K. Lenstra, H.W. Lenstra and L. Lovasz, Factoring polynomials with rational coefficients, Mathematische Annalen 261 (1982) 515.MathSciNetMATHCrossRefGoogle Scholar
  55. [55]
    T. Hahn ed., International tables for crystallography, volume A, Springer (2005).Google Scholar

Copyright information

© SISSA 2013

Authors and Affiliations

  • Maximilian Fischer
    • 1
  • Michael Ratz
    • 1
  • Jesús Torrado
    • 1
  • Patrick K.S. Vaudrevange
    • 2
  1. 1.Physik Department T30Technische Universität MünchenGarchingGermany
  2. 2.Deutsches Elektronen — Synchrotron DESYHamburgGermany

Personalised recommendations