TeV scale mirage mediation in NMSSM

  • Tatsuo Kobayashi
  • Hiroki Makino
  • Ken-ichi Okumura
  • Takashi Shimomura
  • Tsubasa Takahashi
Article

Abstract

We study the next-to-minimal supersymmetric standard model. We consider soft supersymmetry breaking parameters, which are induced by the mirage mediation mechanism of supersymmetry breaking. We concentrate on the mirage mediation, where the so-called mirage scale is the TeV scale. In this scenario, we can realize the up-type Higgs soft mass of \( \mathcal{O}\left( {200} \right) \) GeV, while other masses such as gaugino masses and stop masses are heavy such as 1 TeV or more. Cancellation between the effective μ-term and the down-type Higgs soft mass ameliorates the fine-tuning in the electroweak symmetry breaking even for \( \mu =\mathcal{O}\left( {500} \right) \) GeV. The mixingbetween the doublet and singlet Higgsbosons issuppressed by (κ/λ) tan−1 β. Then the lightest doublet Higgs mass naturally reaches 125 GeV lifted by the new quartic coupling. The higgsino and singlino are light and their linear combination is the lightest superparticle.

Keywords

Supersymmetry Phenomenology 

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  3. [3]
    K. Choi, A. Falkowski, H.P. Nilles, M. Olechowski and S. Pokorski, Stability of flux compactifications and the pattern of supersymmetry breaking, JHEP 11 (2004) 076 [hep-th/0411066] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    K. Choi, A. Falkowski, H.P. Nilles and M. Olechowski, Soft supersymmetry breaking in KKLT flux compactification, Nucl. Phys. B 718 (2005) 113 [hep-th/0503216] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    K. Choi, K.S. Jeong and K.-I. Okumura, Phenomenology of mixed modulus-anomaly mediation in fluxed string compactifications and brane models, JHEP 09 (2005) 039 [hep-ph/0504037] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    M. Endo, M. Yamaguchi and K. Yoshioka, A bottom-up approach to moduli dynamics in heavy gravitino scenario: superpotential, soft terms and sparticle mass spectrum, Phys. Rev. D 72 (2005) 015004 [hep-ph/0504036] [INSPIRE].ADSGoogle Scholar
  7. [7]
    V.S. Kaplunovsky and J. Louis, Model independent analysis of soft terms in effective supergravity and in string theory, Phys. Lett. B 306 (1993) 269 [hep-th/9303040] [INSPIRE].ADSGoogle Scholar
  8. [8]
    A. Brignole, L.E. Ibáñez and C. Muñoz, Towards a theory of soft terms for the supersymmetric standard model, Nucl. Phys. B 422 (1994) 125 [Erratum ibid. B 436 (1995) 747] [hep-ph/9308271] [INSPIRE].
  9. [9]
    T. Kobayashi, D. Suematsu, K. Yamada and Y. Yamagishi, Nonuniversal soft scalar masses in superstring theories, Phys. Lett. B 348 (1995) 402 [hep-ph/9408322] [INSPIRE].ADSGoogle Scholar
  10. [10]
    L.E. Ibáñez, C. Muñoz and S. Rigolin, Aspect of type-I string phenomenology, Nucl. Phys. B 553 (1999) 43 [hep-ph/9812397] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557 (1999) 79 [hep-th/9810155] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino mass without singlets, JHEP 12 (1998) 027 [hep-ph/9810442] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    K. Choi, K.S. Jeong, T. Kobayashi and K.-i. Okumura, Little SUSY hierarchy in mixed modulus-anomaly mediation, Phys. Lett. B 633 (2006) 355 [hep-ph/0508029] [INSPIRE].ADSGoogle Scholar
  14. [14]
    R. Kitano and Y. Nomura, A solution to the supersymmetric fine-tuning problem within the MSSM, Phys. Lett. B 631 (2005) 58 [hep-ph/0509039] [INSPIRE].ADSGoogle Scholar
  15. [15]
    K. Choi, K.S. Jeong, T. Kobayashi and K.-i. Okumura, TeV scale mirage mediation and natural little SUSY hierarchy, Phys. Rev. D 75 (2007) 095012 [hep-ph/0612258] [INSPIRE].ADSGoogle Scholar
  16. [16]
    A. Falkowski, O. Lebedev and Y. Mambrini, SUSY phenomenology of KKLT flux compactifications, JHEP 11 (2005) 034 [hep-ph/0507110] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    H. Baer, E.-K. Park, X. Tata and T.T. Wang, Collider and dark matter searches in models with mixed modulus-anomaly mediated SUSY breaking, JHEP 08 (2006) 041 [hep-ph/0604253] [INSPIRE].ADSGoogle Scholar
  18. [18]
    H. Baer, E.-K. Park, X. Tata and T.T. Wang, Collider and dark matter phenomenology of models with mirage unification, JHEP 06 (2007) 033 [hep-ph/0703024] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    R. Kitano and Y. Nomura, Supersymmetry, naturalness and signatures at the LHC, Phys. Rev. D 73 (2006) 095004 [hep-ph/0602096] [INSPIRE].ADSGoogle Scholar
  20. [20]
    K. Kawagoe and M.M. Nojiri, Discovery of supersymmetry with degenerated mass spectrum, Phys. Rev. D 74 (2006) 115011 [hep-ph/0606104] [INSPIRE].ADSGoogle Scholar
  21. [21]
    H. Abe, Y.G. Kim, T. Kobayashi and Y. Shimizu, TeV scale partial mirage unification and neutralino dark matter, JHEP 09 (2007) 107 [arXiv:0706.4349] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    P. Fayet, Supergauge invariant extension of the Higgs mechanism and a model for the electron and its neutrino, Nucl. Phys. B 90 (1975) 104 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    P. Fayet, Supersymmetry and weak, electromagnetic and strong interactions, Phys. Lett. B 64 (1976) 159 [INSPIRE].ADSGoogle Scholar
  24. [24]
    P. Fayet, Spontaneously broken supersymmetric theories of weak, electromagnetic and strong interactions, Phys. Lett. B 69 (1977) 489 [INSPIRE].ADSGoogle Scholar
  25. [25]
    P. Fayet, Relations between the masses of the superpartners of leptons and quarks, the goldstino couplings and the neutral currents, Phys. Lett. B 84 (1979) 416 [INSPIRE].ADSGoogle Scholar
  26. [26]
    H.P. Nilles, M. Srednicki and D. Wyler, Weak interaction breakdown induced by supergravity, Phys. Lett. B 120 (1983) 346 [INSPIRE].ADSGoogle Scholar
  27. [27]
    J.M. Frere, D.R.T. Jones and S. Raby, Fermion masses and induction of the weak scale by supergravity, Nucl. Phys. B 222 (1983) 11 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    J.P. Derendinger and C.A. Savoy, Quantum effects and SU(2) × U(1) breaking in supergravity gauge theories, Nucl. Phys. B 237 (1984) 307 [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    J.R. Ellis, J.F. Gunion, H.E. Haber, L. Roszkowski and F. Zwirner, Higgs bosons in a nonminimal supersymmetric model, Phys. Rev. D 39 (1989) 844 [INSPIRE].ADSGoogle Scholar
  30. [30]
    M. Drees, Supersymmetric models with extended Higgs sector, Int. J. Mod. Phys. A 4 (1989) 3635 [INSPIRE].ADSGoogle Scholar
  31. [31]
    U. Ellwanger, C. Hugonie and A.M. Teixeira, The next-to-minimal supersymmetric standard model, Phys. Rept. 496 (2010) 1 [arXiv:0910.1785] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    J.E. Kim and H.P. Nilles, The μ problem and the strong CP problem, Phys. Lett. B 138 (1984) 150 [INSPIRE].MathSciNetADSGoogle Scholar
  33. [33]
    H. Abe, T. Higaki and T. Kobayashi, KKLT type models with moduli-mixing superpotential, Phys. Rev. D 73 (2006) 046005 [hep-th/0511160] [INSPIRE].MathSciNetADSGoogle Scholar
  34. [34]
    K. Choi, K.S. Jeong and K.-i. Okumura, Flavor and CP conserving moduli mediated SUSY breaking in flux compactification, JHEP 07 (2008) 047 [arXiv:0804.4283] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    O. Lebedev, H.P. Nilles and M. Ratz, A note on fine-tuning in mirage mediation, hep-ph/0511320 [INSPIRE].
  36. [36]
    A. Riotto and E. Roulet, Vacuum decay along supersymmetric flat directions, Phys. Lett. B 377 (1996) 60 [hep-ph/9512401] [INSPIRE].MathSciNetADSGoogle Scholar
  37. [37]
    A. Kusenko, P. Langacker and G. Segre, Phase transitions and vacuum tunneling into charge and color breaking minima in the MSSM, Phys. Rev. D 54 (1996) 5824 [hep-ph/9602414] [INSPIRE].ADSGoogle Scholar
  38. [38]
    A. Kusenko and P. Langacker, Is the vacuum stable?, Phys. Lett. B 391 (1997) 29 [hep-ph/9608340] [INSPIRE].MathSciNetADSGoogle Scholar
  39. [39]
    Y. Kanehata, T. Kobayashi, Y. Konishi, O. Seto and T. Shimomura, Constraints from unrealistic vacua in the next-to-minimal supersymmetric standard model, Prog. Theor. Phys. 126 (2011) 1051 [arXiv:1103.5109] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  40. [40]
    T. Kobayashi, T. Shimomura and T. Takahashi, Constraining the Higgs sector from false vacua in the next-to-minimal supersymmetric standard model, Phys. Rev. D 86 (2012) 015029 [arXiv:1203.4328] [INSPIRE].ADSGoogle Scholar
  41. [41]
    U. Ellwanger and C. Hugonie, NMHDECAY 2.0: an updated program for sparticle masses, Higgs masses, couplings and decay widths in the NMSSM, Comput. Phys. Commun. 175 (2006) 290 [hep-ph/0508022] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  42. [42]
    G. Bélanger, F. Boudjema, C. Hugonie, A. Pukhov and A. Semenov, Relic density of dark matter in the NMSSM, JCAP 09 (2005) 001 [hep-ph/0505142] [INSPIRE].CrossRefGoogle Scholar
  43. [43]
    U. Ellwanger, J.F. Gunion and C. Hugonie, NMHDECAY: a Fortran code for the Higgs masses, couplings and decay widths in the NMSSM, JHEP 02 (2005) 066 [hep-ph/0406215] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    G. Bélanger et al., Higgs bosons at 98 and 125 GeV at LEP and the LHC, arXiv:1210.1976 [INSPIRE].
  45. [45]
    U. Ellwanger, Higgs bosons in the next-to-minimal supersymmetric standard model at the LHC, Eur. Phys. J. C 71 (2011) 1782 [arXiv:1108.0157] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    S.F. King, M. Muhlleitner and R. Nevzorov, NMSSM Higgs benchmarks near 125 GeV, Nucl. Phys. B 860 (2012) 207 [arXiv:1201.2671] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    D.A. Vasquez et al., The 125 GeV Higgs in the NMSSM in light of LHC results and astrophysics constraints, Phys. Rev. D 86 (2012) 035023 [arXiv:1203.3446] [INSPIRE].ADSGoogle Scholar
  48. [48]
    U. Ellwanger and C. Hugonie, Higgs bosons near 125 GeV in the NMSSM with constraints at the GUT scale, Adv. High Energy Phys. 2012 (2012) 625389 [arXiv:1203.5048] [INSPIRE].Google Scholar
  49. [49]
    G. Bélanger, F. Boudjema, C. Hugonie, A. Pukhov and A. Semenov, Relic density of dark matter in the NMSSM, JCAP 09 (2005) 001 [hep-ph/0505142] [INSPIRE].CrossRefGoogle Scholar
  50. [50]
    D.G. Cerdeno, C. Hugonie, D.E. Lopez-Fogliani, C. Muñoz and A.M. Teixeira, Theoretical predictions for the direct detection of neutralino dark matter in the NMSSM, JHEP 12 (2004) 048 [hep-ph/0408102] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    T. Kobayashi, H. Makino, K.-i. Okumura, T. Shimomura and T. Takahashi, work in progress.Google Scholar
  52. [52]
    M. Asano and T. Higaki, Natural supersymmetric spectrum in mirage mediation, Phys. Rev. D 86 (2012) 035020 [arXiv:1204.0508] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Tatsuo Kobayashi
    • 1
  • Hiroki Makino
    • 2
  • Ken-ichi Okumura
    • 2
  • Takashi Shimomura
    • 3
  • Tsubasa Takahashi
    • 4
  1. 1.Department of PhysicsKyoto UniversityKyotoJapan
  2. 2.Department of PhysicsKyushu UniversityFukuokaJapan
  3. 3.Department of PhysicsNiigata UniversityNiigataJapan
  4. 4.Yukawa Institute for Theoretical PhysicsKyoto UniversityKyotoJapan

Personalised recommendations