MSSM: cornered and correlated

Open Access
Article

Abstract

Inspired by the latest results of ATLAS and CMS on the search for the standard model (SM) Higgs scalar, we discuss in this article the correlations between Higgs-boson properties, low-energy observables, such as BXsγ, Bsμ+μ, and (g − 2)μ, and the dark matter (DM) relic density. We focus on the corners of the MSSM parameter space where the pph → γγ signal is enhanced due to the presence of a light stau state. In this region tan β, MA, At, and μ take large values, and we find striking correlations between many of the considered observables. In particular, the BXsγ branching fraction is enhanced, while the Bsμ+μ rate tends to be below the SM expectation. In contrast, the Higgs-boson couplings show good overall agreement with the preliminary experimental determinations, the DM abundance is consistent with observation, and the discrepancy in (g − 2)μ is reduced. The predicted deviations and found correlations could be tested in the near future and hence may become very valuable as guidelines and consistency checks.

Keywords

Supersymmetry Phenomenology 

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  3. [3]
    M. Carena, S. Gori, N.R. Shah and C.E. Wagner, A 125 GeV SM-like Higgs in the MSSM and the γγ rate, JHEP 03 (2012) 014 [arXiv:1112.3336] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    M. Carena, S. Gori, N.R. Shah, C.E. Wagner and L.-T. Wang, Light stau phenomenology and the Higgs γγ rate, JHEP 07 (2012) 175 [arXiv:1205.5842] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    M. Carena, I. Low and C.E. Wagner, Implications of a modified Higgs to diphoton decay width, JHEP 08 (2012) 060 [arXiv:1206.1082] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    J. Ke, M.-X. Luo, L.-Y. Shan, K. Wang and L. Wang, Searching SUSY leptonic partner at the CERN LHC, arXiv:1207.0990 [INSPIRE].
  7. [7]
    A. Joglekar, P. Schwaller and C.E. Wagner, Dark matter and enhanced Higgs to di-photon rate from vector-like leptons, JHEP 12 (2012) 064 [arXiv:1207.4235] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    N. Arkani-Hamed, K. Blum, R.T. D’Agnolo and J. Fan, 2 : 1 for naturalness at the LHC?, arXiv:1207.4482 [INSPIRE].
  9. [9]
    L.G. Almeida, E. Bertuzzo, P.A. Machado and R.Z. Funchal, Does H → γγ taste like vanilla new physics?, JHEP 11 (2012) 085 [arXiv:1207.5254] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    G.F. Giudice, P. Paradisi, A. Strumia and A. Strumia, Correlation between the Higgs decay rate to two photons and the muon g-2, JHEP 10 (2012) 186 [arXiv:1207.6393] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    J. Kearney, A. Pierce and N. Weiner, Vectorlike fermions and Higgs couplings, Phys. Rev. D 86 (2012) 113005 [arXiv:1207.7062] [INSPIRE].ADSGoogle Scholar
  12. [12]
    M.A. Ajaib, I. Gogoladze and Q. Shafi, Higgs boson production and decay: effects from light third generation and vectorlike matter, Phys. Rev. D 86 (2012) 095028 [arXiv:1207.7068] [INSPIRE].ADSGoogle Scholar
  13. [13]
    K.J. Bae, T.H. Jung and H.D. Kim, 125 GeV Higgs as a pseudo-Goldstone boson in supersymmetry with vector-like matters, arXiv:1208.3748 [INSPIRE].
  14. [14]
    M. Voloshin, CP violation in Higgs diphoton decay in models with vectorlike heavy fermions, Phys. Rev. D 86 (2012) 093016 [arXiv:1208.4303] [INSPIRE].ADSGoogle Scholar
  15. [15]
    D. McKeen, M. Pospelov and A. Ritz, Modified Higgs branching ratios versus CP and lepton flavor violation, Phys. Rev. D 86 (2012) 113004 [arXiv:1208.4597] [INSPIRE].ADSGoogle Scholar
  16. [16]
    A. Arbey, M. Battaglia, A. Djouadi and F. Mahmoudi, The Higgs sector of the phenomenological MSSM in the light of the Higgs boson discovery, JHEP 09 (2012) 107 [arXiv:1207.1348] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    CDF collaboration, T. Aaltonen et al., Combined search for the standard model Higgs boson decaying to a bb pair using the full CDF data set, Phys. Rev. Lett. 109 (2012) 111802 [arXiv:1207.1707] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    DØ collaboration, V.M. Abazov et al., Combined search for the Standard Model Higgs boson decaying to \( b\overline{b} \) using the DØ run II data set, Phys. Rev. Lett. 109 (2012) 121802 [arXiv:1207.6631] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    A. Djouadi, The anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    LEP Working Group for Higgs boson searches, ALEPH, DELPHI, L3 and OPAL collaborations, R. Barate et al., Search for the Standard Model Higgs boson at LEP, Phys. Lett. B 565 (2003) 61 [hep-ex/0306033] [INSPIRE].ADSGoogle Scholar
  21. [21]
    Y. Okada, M. Yamaguchi and T. Yanagida, Upper bound of the lightest Higgs boson mass in the minimal supersymmetric Standard Model, Prog. Theor. Phys. 85 (1991) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J.R. Ellis, G. Ridolfi and F. Zwirner, Radiative corrections to the masses of supersymmetric Higgs bosons, Phys. Lett. B 257 (1991) 83 [INSPIRE].ADSGoogle Scholar
  23. [23]
    H.E. Haber and R. Hempfling, Can the mass of the lightest Higgs boson of the minimal supersymmetric model be larger than m Z ?, Phys. Rev. Lett. 66 (1991) 1815 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    J. Casas, J. Espinosa, M. Quirós and A. Riotto, The lightest Higgs boson mass in the minimal supersymmetric Standard Model, Nucl. Phys. B 436 (1995) 3 [Erratum ibid. B 439 (1995)466] [hep-ph/9407389] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    A. Dabelstein, The one loop renormalization of the MSSM Higgs sector and its application to the neutral scalar Higgs masses, Z. Phys. C 67 (1995) 495 [hep-ph/9409375] [INSPIRE].ADSGoogle Scholar
  26. [26]
    M.S. Carena, J. Espinosa, M. Quirós and C. Wagner, Analytical expressions for radiatively corrected Higgs masses and couplings in the MSSM, Phys. Lett. B 355 (1995) 209 [hep-ph/9504316] [INSPIRE].ADSGoogle Scholar
  27. [27]
    M.S. Carena, M. Quirós and C. Wagner, Effective potential methods and the Higgs mass spectrum in the MSSM, Nucl. Phys. B 461 (1996) 407 [hep-ph/9508343] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    H.E. Haber, R. Hempfling and A.H. Hoang, Approximating the radiatively corrected Higgs mass in the minimal supersymmetric model, Z. Phys. C 75 (1997) 539 [hep-ph/9609331] [INSPIRE].Google Scholar
  29. [29]
    S. Heinemeyer, W. Hollik and G. Weiglein, The mass of the lightest MSSM Higgs boson: a compact analytical expression at the two loop level, Phys. Lett. B 455 (1999) 179 [hep-ph/9903404] [INSPIRE].ADSGoogle Scholar
  30. [30]
    M.S. Carena et al., Reconciling the two loop diagrammatic and effective field theory computations of the mass of the lightest CP-even Higgs boson in the MSSM, Nucl. Phys. B 580 (2000)29 [hep-ph/0001002] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    R. Hempfling, Yukawa coupling unification with supersymmetric threshold corrections, Phys. Rev. D 49 (1994) 6168 [INSPIRE].ADSGoogle Scholar
  32. [32]
    L.J. Hall, R. Rattazzi and U. Sarid, The top quark mass in supersymmetric SO(10) unification, Phys. Rev. D 50 (1994) 7048 [hep-ph/9306309] [INSPIRE].ADSGoogle Scholar
  33. [33]
    M.S. Carena, M. Olechowski, S. Pokorski and C. Wagner, Electroweak symmetry breaking and bottom-top Yukawa unification, Nucl. Phys. B 426 (1994) 269 [hep-ph/9402253] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    D.M. Pierce, J.A. Bagger, K.T. Matchev and R.-J. Zhang, Precision corrections in the minimal supersymmetric Standard Model, Nucl. Phys. B 491 (1997) 3 [hep-ph/9606211] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    M. Spira, A. Djouadi, D. Graudenz and P. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    B.A. Kniehl and M. Spira, Low-energy theorems in Higgs physics, Z. Phys. C 69 (1995) 77 [hep-ph/9505225] [INSPIRE].Google Scholar
  37. [37]
    J.R. Ellis, M.K. Gaillard and D.V. Nanopoulos, A phenomenological profile of the Higgs boson, Nucl. Phys. B 106 (1976) 292 [INSPIRE].ADSGoogle Scholar
  38. [38]
    M.A. Shifman, A. Vainshtein, M. Voloshin and V.I. Zakharov, Low-energy theorems for Higgs boson couplings to photons, Sov. J. Nucl. Phys. 30 (1979) 711 [Yad. Fiz. 30 (1979) 1368] [INSPIRE].Google Scholar
  39. [39]
    A. Djouadi, V. Driesen, W. Hollik and J.I. Illana, The coupling of the lightest SUSY Higgs boson to two photons in the decoupling regime, Eur. Phys. J. C 1 (1998) 149 [hep-ph/9612362] [INSPIRE].ADSGoogle Scholar
  40. [40]
    R. Dermisek and I. Low, Probing the stop sector and the sanity of the MSSM with the Higgs boson at the LHC, Phys. Rev. D 77 (2008) 035012 [hep-ph/0701235] [INSPIRE].ADSGoogle Scholar
  41. [41]
    G. Cacciapaglia, A. Deandrea and J. Llodra-Perez, Higgs → γγ beyond the Standard Model, JHEP 06 (2009) 054 [arXiv:0901.0927] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    I. Low, R. Rattazzi and A. Vichi, Theoretical constraints on the Higgs effective couplings, JHEP 04 (2010) 126 [arXiv:0907.5413] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    M.S. Carena, D. Garcia, U. Nierste and C.E. Wagner, Effective Lagrangian for the tbH + interaction in the MSSM and charged Higgs phenomenology, Nucl. Phys. B 577 (2000) 88 [hep-ph/9912516] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    A. Djouadi, Precision Higgs coupling measurements at the LHC through ratios of production cross sections, arXiv:1208.3436 [INSPIRE].
  45. [45]
    M. Misiak et al., Estimate of B( \( \overline{B} \)X sγ) at O(\( \alpha_s^2 \)), Phys. Rev. Lett. 98 (2007) 022002 [hep-ph/0609232] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    M. Misiak and M. Steinhauser, NNLO QCD corrections to the BX sγ matrix elements using interpolation in m c, Nucl. Phys. B 764 (2007) 62 [hep-ph/0609241] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    A. Freitas and U. Haisch, \( \overline{B} \)X sγ in two universal extra dimensions, Phys. Rev. D 77 (2008)093008 [arXiv:0801.4346] [INSPIRE].ADSGoogle Scholar
  48. [48]
    M. Misiak and M. Steinhauser, Three loop matching of the dipole operators for bsγ and bsg,Nucl. Phys.B 683(2004)277[hep-ph/0401041] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    G. Degrassi, P. Gambino and G. Giudice, BX sγ in supersymmetry: large contributions beyond the leading order, JHEP 12 (2000) 009 [hep-ph/0009337] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    M.S. Carena, D. Garcia, U. Nierste and C.E. Wagner, bsγ and supersymmetry with large tan β, Phys. Lett. B 499 (2001) 141 [hep-ph/0010003] [INSPIRE].ADSGoogle Scholar
  51. [51]
    B. Grinstein and M.B. Wise, Weak radiative B meson decay as a probe of the Higgs sector, Phys. Lett. B 201 (1988) 274 [INSPIRE].ADSGoogle Scholar
  52. [52]
    W.-S. Hou and R. Willey, Effects of charged Higgs bosons on the processes bsγ, bsg and bs+, Phys. Lett. B 202 (1988) 591 [INSPIRE].ADSGoogle Scholar
  53. [53]
    W. Altmannshofer and D.M. Straub, Viability of MSSM scenarios at very large tan β, JHEP 09 (2010) 078 [arXiv:1004.1993] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    R. Barbieri and G. Giudice, bsγ decay and supersymmetry, Phys. Lett. B 309 (1993) 86 [hep-ph/9303270] [INSPIRE].ADSGoogle Scholar
  55. [55]
    C. Bobeth, M. Misiak and J. Urban, Photonic penguins at two loops and m t dependence of BR[BX s+], Nucl. Phys. B 574 (2000) 291 [hep-ph/9910220] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    C. Bobeth, P. Gambino, M. Gorbahn and U. Haisch, Complete NNLO QCD analysis of B X sℓ+ℓ− and higher order electroweak effects, JHEP 04 (2004) 071 [hep-ph/0312090] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    K. Babu and C.F. Kolda, Higgs mediated B 0μ + μ in minimal supersymmetry, Phys. Rev. Lett. 84 (2000) 228 [hep-ph/9909476] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    C. Bobeth, A.J. Buras, F. Krüger and J. Urban, QCD corrections to \( \overline{B} \)X d,s \( \nu \overline{\nu} \), \( \overline{B} \) d,s → ℓ+ℓ−, Kπν ν and K Lμ+μin the MSSM, Nucl. Phys. B 630 (2002) 87 [hep-ph/0112305] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    P.H. Chankowski and L. Slawianowska, \( B_{{\mathrm{d},\mathrm{s}}}^0 \)μ μ + decay in the MSSM, Phys. Rev. D 63 (2001)054012 [hep-ph/0008046] [INSPIRE].ADSGoogle Scholar
  60. [60]
    S.P. Martin and J.D. Wells, Muon anomalous magnetic dipole moment in supersymmetric theories, Phys. Rev. D 64 (2001) 035003 [hep-ph/0103067] [INSPIRE].ADSGoogle Scholar
  61. [61]
    D. Stöckinger, The muon magnetic moment and supersymmetry, J. Phys. G 34 (2007) R45 [hep-ph/0609168] [INSPIRE].ADSGoogle Scholar
  62. [62]
    T. Moroi, The muon anomalous magnetic dipole moment in the minimal supersymmetric Standard Model, Phys. Rev. D 53 (1996) 6565 [Erratum ibid. D 56 (1997) 4424] [hep-ph/9512396] [INSPIRE].ADSGoogle Scholar
  63. [63]
    K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances, Phys. Rev. D 43 (1991) 3191 [INSPIRE].ADSGoogle Scholar
  64. [64]
    J. Edsjo and P. Gondolo, Neutralino relic density including coannihilations, Phys. Rev. D 56 (1997)1879 [hep-ph/9704361] [INSPIRE].ADSGoogle Scholar
  65. [65]
    J.R. Ellis, T. Falk, K.A. Olive and M. Srednicki, Calculations of neutralino-stau coannihilation channels and the cosmologically relevant region of MSSM parameter space, Astropart. Phys. 13 (2000) 181 [Erratum ibid. 15 (2001) 413] [hep-ph/9905481] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    M. Gomez, G. Lazarides and C. Pallis, Supersymmetric cold dark matter with Yukawa unification, Phys. Rev. D 61 (2000) 123512 [hep-ph/9907261] [INSPIRE].ADSGoogle Scholar
  67. [67]
    B. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra, Comput. Phys. Commun. 143 (2002) 305 [hep-ph/0104145] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  68. [68]
    SOFTSUSY webpage, http://softsusy.hepforge.org/.
  69. [69]
    M. Spira, HIGLU: a program for the calculation of the total Higgs production cross-section at hadron colliders via gluon fusion including QCD corrections, hep-ph/9510347 [INSPIRE].
  70. [70]
    HIGLU code and manual webpage, http://people.web.psi.ch/spira/higlu.
  71. [71]
    A. Djouadi, J. Kalinowski and M. Spira, HDECAY: a program for Higgs boson decays in the Standard Model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56 [hep-ph/9704448] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  72. [72]
    HDECAY code and manual webpage, http://people.web.psi.ch/spira/hdecay.
  73. [73]
    F. Mahmoudi, SuperIso: a program for calculating the isospin asymmetry of BK γ in the MSSM, Comput. Phys. Commun. 178 (2008) 745 [arXiv:0710.2067] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  74. [74]
    F. Mahmoudi, SuperIso v2.3: a program for calculating flavor physics observables in supersymmetry, Comput. Phys. Commun. 180 (2009) 1579 [arXiv:0808.3144] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    SuperIso webpage, http://superiso.in2p3.fr/.
  76. [76]
    A. Arbey and F. Mahmoudi, SuperIso relic: a program for calculating relic density and flavor physics observables in supersymmetry, Comput. Phys. Commun. 181 (2010) 1277 [arXiv:0906.0369] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  77. [77]
    A. Djouadi, J.-L. Kneur and G. Moultaka, SuSpect: a fortran code for the supersymmetric and Higgs particle spectrum in the MSSM, Comput. Phys. Commun. 176 (2007) 426 [hep-ph/0211331] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  78. [78]
  79. [79]
    S. Heinemeyer, W. Hollik and G. Weiglein, FeynHiggs: a program for the calculation of the masses of the neutral CP even Higgs bosons in the MSSM, Comput. Phys. Commun. 124 (2000)76 [hep-ph/9812320] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  80. [80]
    FeynHiggs webpage, http://www.feynhiggs.de/.
  81. [81]
    B. Allanach, A. Djouadi, J. Kneur, W. Porod and P. Slavich, Precise determination of the neutral Higgs boson masses in the MSSM, JHEP 09 (2004) 044 [hep-ph/0406166] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    S. Alekhin, A. Djouadi and S. Moch, The top quark and Higgs boson masses and the stability of the electroweak vacuum, Phys. Lett. B 716 (2012) 214 [arXiv:1207.0980] [INSPIRE].ADSGoogle Scholar
  83. [83]
    Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001 [INSPIRE].ADSGoogle Scholar
  84. [84]
    A. Arbey, M. Battaglia and F. Mahmoudi, Implications of LHC searches on SUSY particle spectra: the pMSSM parameter space with neutralino dark matter, Eur. Phys. J. C 72 (2012)1847 [arXiv:1110.3726] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    A. Arbey, M. Battaglia and F. Mahmoudi, Constraints on the MSSM from the Higgs sector: a pMSSM study of Higgs searches, \( B_{\mathrm{s}}^0 \)μ + μ and dark matter direct detection, Eur. Phys. J. C 72 (2012) 1906 [arXiv:1112.3032] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    R. Rattazzi and U. Sarid, Large tan β in gauge mediated SUSY breaking models, Nucl. Phys. B 501 (1997) 297 [hep-ph/9612464] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    J. Hisano and S. Sugiyama, Charge-breaking constraints on left-right mixing of staus, Phys. Lett. B 696 (2011) 92 [arXiv:1011.0260] [INSPIRE].ADSGoogle Scholar
  88. [88]
    R. Sato, K. Tobioka and N. Yokozaki, Enhanced diphoton signal of the Higgs boson and the muon g-2 in gauge mediation models, Phys. Lett. B 716 (2012) 441 [arXiv:1208.2630] [INSPIRE].ADSGoogle Scholar
  89. [89]
    T. Kitahara, Vacuum stability constraints on the enhancement of the h → γγ rate in the MSSM, JHEP 11 (2012) 021 [arXiv:1208.4792] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    Heavy Flavor Averaging Group collaboration, Y. Amhis et al., Averages of b-hadron, c-hadron and τ -lepton properties as of early 2012, arXiv:1207.1158 [INSPIRE].
  91. [91]
    Heavy Flavor Averaging Group (HFAG) averages online update webpage http://www.slac.stanford.edu/xorg/hfag.
  92. [92]
    ATLAS, CMS and LHCb collaborations, Search for the rare decays Bμμ at the LHC with the ATLAS, CMS and LHCb experiments, ATLAS-CONF-2012-061, CERN, Geneva Switzerland (2012) [CMS-PAS-BPH-12-009] [LHCb-CONF-2012-017] [INSPIRE].
  93. [93]
    K. De Bruyn et al., Branching ratio measurements of B s decays, Phys. Rev. D 86 (2012) 014027 [arXiv:1204.1735] [INSPIRE].ADSGoogle Scholar
  94. [94]
    K. De Bruyn et al., Probing new physics via the \( B_{\mathrm{s}}^0 \)μ + μ effective lifetime, Phys. Rev. Lett. 109 (2012) 041801 [arXiv:1204.1737] [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    Muon G-2 collaboration, G. Bennett et al., Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].ADSGoogle Scholar
  96. [96]
    K. Hagiwara, R. Liao, A.D. Martin, D. Nomura and T. Teubner, (g-2)μ and \( \alpha \left( {M_Z^2} \right) \) re-evaluated using new precise data, J. Phys. G 38 (2011) 085003 [arXiv:1105.3149] [INSPIRE].ADSGoogle Scholar
  97. [97]
    T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio, Complete tenth-order QED contribution to the muon g-2, Phys. Rev. Lett. 109 (2012) 111808 [arXiv:1205.5370] [INSPIRE].ADSCrossRefGoogle Scholar
  98. [98]
    WMAP collaboration, E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [INSPIRE].ADSCrossRefGoogle Scholar
  99. [99]
    A. Arbey, M. Battaglia and F. Mahmoudi, Light neutralino dark matter in the pMSSM: implications of LEP, LHC and dark matter searches on SUSY particle spectra, Eur. Phys. J. C 72 (2012) 2169 [arXiv:1205.2557] [INSPIRE].ADSGoogle Scholar
  100. [100]
    BaBar collaboration, J. Lees et al., Evidence for an excess of \( \overline{B} \)D ( ∗) τ\( \overline{v} \) τ decays, Phys. Rev. Lett. 109 (2012) 101802 [arXiv:1205.5442] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA 2013

Authors and Affiliations

  1. 1.Rudolf Peierls Centre for Theoretical PhysicsUniversity of OxfordOxfordU.K.
  2. 2.CERN Theory Division, Physics DepartmentGeneva 23Switzerland
  3. 3.Clermont Université, Université Blaise Pascal, CNRS/IN2P3, LPCClermont-FerrandFrance

Personalised recommendations