Journal of High Energy Physics

, 2013:57

Natural SUSY predicts: Higgs couplings

Open Access
Article

Abstract

We study Higgs production and decays in the context of natural SUSY, allowing for an extended Higgs sector to account for a 125 GeV lightest Higgs boson. Under broad assumptions, Higgs observables at the LHC depend on at most four free parameters with restricted numerical ranges. Two parameters suffice to describe MSSM particle loops. The MSSM loop contribution to the diphoton rate is constrained from above by direct stop and chargino searches and by electroweak precision tests. Naturalness, in particular in demanding that rare B decays remain consistent with experiment without fine-tuned cancellations, provides a lower (upper) bound to the stop contribution to the Higgs-gluon coupling (Higgs mass). Two parameters suffice to describe Higgs mixing, even in the presence of loop induced non-holomorphic Yukawa couplings. Generic classes of MSSM extensions, that address the fine-tuning problem, predict sizable modifications to the effective bottom Yukawa yb. Non-decoupling gauge extensions enhance yb, while a heavy SM singlet reduces yb. A factor of 4–6 enhancement in the diphoton rate at the LHC, compared to the SM prediction, can be accommodated. The ratio of the enhancements in the diphoton vs. the WW and ZZ channels cannot exceed 1.4. The h\( b\overline{b} \) rate in associated production cannot exceed the SM rate by more than 50%.

Keywords

Higgs Physics Supersymmetric Standard Model 

References

  1. [1]
    CMS collaboration, Interpretation of Searches for Supersymmetry, CMS-PAS-SUS-11-016 (2011).
  2. [2]
    ATLAS collaboration, Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt{s}=7 \) TeV proton-proton collisions, ATLAS-CONF-2012-033 (2012).
  3. [3]
    N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    M. Papucci, J.T. Ruderman and A. Weiler, Natural SUSY endures, JHEP 09 (2012) 035 [arXiv:1110.6926] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    Y. Kats, P. Meade, M. Reece and D. Shih, The status of GMSB after 1/fb at the LHC, JHEP 02 (2012) 115 [arXiv:1110.6444] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    C. Brust, A. Katz, S. Lawrence and R. Sundrum, SUSY, the third generation and the LHC, JHEP 03 (2012) 103 [arXiv:1110.6670] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    R. Essig, E. Izaguirre, J. Kaplan and J.G. Wacker, Heavy flavor simplified models at the LHC, JHEP 01 (2012) 074 [arXiv:1110.6443] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    ATLAS collaboration, Search for scalar bottom pair production with the ATLAS detector in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. Lett. 108 (2012) 181802 [arXiv:1112.3832] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    ATLAS collaboration, Search for scalar top quark pair production in natural gauge mediated supersymmetry models with the ATLAS detector in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 715 (2012) 44 [arXiv:1204.6736] [INSPIRE].ADSGoogle Scholar
  10. [10]
    S. Dimopoulos and G. Giudice, Naturalness constraints in supersymmetric theories with nonuniversal soft terms, Phys. Lett. B 357 (1995) 573 [hep-ph/9507282] [INSPIRE].ADSGoogle Scholar
  11. [11]
    A.G. Cohen, D. Kaplan and A. Nelson, The more minimal supersymmetric standard model, Phys. Lett. B 388 (1996) 588 [hep-ph/9607394] [INSPIRE].ADSGoogle Scholar
  12. [12]
    R. Auzzi, A. Giveon and S.B. Gudnason, Flavor of quiver-like realizations of effective supersymmetry, JHEP 02 (2012) 069 [arXiv:1112.6261] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    C. Csáki, L. Randall and J. Terning, Light stops from Seiberg duality, Phys. Rev. D 86 (2012) 075009 [arXiv:1201.1293] [INSPIRE].ADSGoogle Scholar
  14. [14]
    N. Craig, M. McCullough and J. Thaler, Flavor mediation delivers natural SUSY, JHEP 06 (2012) 046 [arXiv:1203.1622] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    N. Craig, S. Dimopoulos and T. Gherghetta, Split families unified, JHEP 04 (2012) 116 [arXiv:1203.0572] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    C. Csáki, Y. Grossman and B. Heidenreich, MFV SUSY: a natural theory for R-parity violation, Phys. Rev. D 85 (2012) 095009 [arXiv:1111.1239] [INSPIRE].ADSGoogle Scholar
  17. [17]
    P.W. Graham, D.E. Kaplan, S. Rajendran and P. Saraswat, Displaced supersymmetry, JHEP 07 (2012) 149 [arXiv:1204.6038] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    J. Fan, M. Reece and J.T. Ruderman, Stealth supersymmetry, JHEP 11 (2011) 012 [arXiv:1105.5135] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    J. Fan, M. Reece and J.T. Ruderman, A Stealth Supersymmetry Sampler, JHEP 07 (2012) 196 [arXiv:1201.4875] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    J. Alwall, M.-P. Le, M. Lisanti and J.G. Wacker, Searching for directly decaying gluinos at the Tevatron, Phys. Lett. B 666 (2008) 34 [arXiv:0803.0019] [INSPIRE].ADSGoogle Scholar
  21. [21]
    J. Alwall, M.-P. Le, M. Lisanti and J.G. Wacker, Model-independent jets plus missing energy searches, Phys. Rev. D 79 (2009) 015005 [arXiv:0809.3264] [INSPIRE].ADSGoogle Scholar
  22. [22]
    T.J. LeCompte and S.P. Martin, Large Hadron Collider reach for supersymmetric models with compressed mass spectra, Phys. Rev. D 84 (2011) 015004 [arXiv:1105.4304] [INSPIRE].ADSGoogle Scholar
  23. [23]
    T.J. LeCompte and S.P. Martin, Compressed supersymmetry after 1/fb at the Large Hadron Collider, Phys. Rev. D 85 (2012) 035023 [arXiv:1111.6897] [INSPIRE].ADSGoogle Scholar
  24. [24]
    G.D. Kribs and A. Martin, Supersoft supersymmetry is super-safe, Phys. Rev. D 85 (2012) 115014 [arXiv:1203.4821] [INSPIRE].ADSGoogle Scholar
  25. [25]
    CMS collaboration, Combined results of searches for the standard model Higgs boson in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 710 (2012) 26 [arXiv:1202.1488] [INSPIRE].ADSGoogle Scholar
  26. [26]
    CMS collaboration, Search for the standard model Higgs boson decaying into two photons in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 710 (2012) 403 [arXiv:1202.1487] [INSPIRE].ADSGoogle Scholar
  27. [27]
    CMS collaboration, Search for the standard model Higgs boson in the decay channel H to ZZ to 4 leptons in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. Lett. 108 (2012) 111804 [arXiv:1202.1997] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    ATLAS collaboration, Combined search for the Standard Model Higgs boson using up to 4.9 fb −1 of pp collision data at \( \sqrt{s}=7 \) TeV with the ATLAS detector at the LHC, Phys. Lett. B 710 (2012) 49 [arXiv:1202.1408] [INSPIRE].ADSGoogle Scholar
  29. [29]
    ATLAS collaboration, Search for the Standard Model Higgs boson in the diphoton decay channel with 4.9 fb −1 of pp collisions at \( \sqrt{s}=7 \) TeV with ATLAS, Phys. Rev. Lett. 108 (2012) 111803 [arXiv:1202.1414] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    ATLAS collaboration, Search for the Standard Model Higgs boson in the decay channel HZZ (*) →4ℓ with 4.8 fb −1 of pp collision data at \( \sqrt{s}=7 \) TeV with ATLAS, Phys. Lett. B 710 (2012) 383 [arXiv:1202.1415] [INSPIRE].ADSGoogle Scholar
  31. [31]
    TEVNPH (Tevatron New Phenomina and Higgs Working Group), CDF, D0 collaborations, Combined CDF and D0 Search for Standard Model Higgs Boson Production with up to 10.0 fb −1 of Data, arXiv:1203.3774 [INSPIRE].
  32. [32]
    H. Baer, V. Barger and A. Mustafayev, Implications of a 125 GeV Higgs scalar for LHC SUSY and neutralino dark matter searches, Phys. Rev. D 85 (2012) 075010 [arXiv:1112.3017] [INSPIRE].ADSGoogle Scholar
  33. [33]
    S. Heinemeyer, O. Stal and G. Weiglein, Interpreting the LHC Higgs Search Results in the MSSM, Phys. Lett. B 710 (2012) 201 [arXiv:1112.3026] [INSPIRE].ADSGoogle Scholar
  34. [34]
    A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi and J. Quevillon, Implications of a 125 GeV Higgs for supersymmetric models, Phys. Lett. B 708 (2012) 162 [arXiv:1112.3028] [INSPIRE].ADSGoogle Scholar
  35. [35]
    A. Arbey, M. Battaglia and F. Mahmoudi, Constraints on the MSSM from the Higgs sector: A pMSSM Study of Higgs Searches, \( B_s^0\to {\mu^{+}}{\mu^{-}} \) and dark matter direct detection, Eur. Phys. J. C 72 (2012) 1906 [arXiv:1112.3032] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    M. Kadastik, K. Kannike, A. Racioppi and M. Raidal, Implications of the 125 GeV Higgs boson for scalar dark matter and for the CMSSM phenomenology, JHEP 05 (2012) 061 [arXiv:1112.3647] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    T. Moroi, R. Sato and T.T. Yanagida, Extra Matters Decree the Relatively Heavy Higgs of Mass about 125 GeV in the Supersymmetric Model, Phys. Lett. B 709 (2012) 218 [arXiv:1112.3142] [INSPIRE].ADSGoogle Scholar
  38. [38]
    O. Buchmueller et al., Higgs and supersymmetry, Eur. Phys. J. C 72 (2012) 2020 [arXiv:1112.3564] [INSPIRE].ADSGoogle Scholar
  39. [39]
    J. Cao, Z. Heng, D. Li and J.M. Yang, Current experimental constraints on the lightest Higgs boson mass in the constrained MSSM, Phys. Lett. B 710 (2012) 665 [arXiv:1112.4391] [INSPIRE].ADSGoogle Scholar
  40. [40]
    U. Ellwanger, A Higgs boson near 125 GeV with enhanced di-photon signal in the NMSSM, JHEP 03 (2012) 044 [arXiv:1112.3548] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    Z. Kang, J. Li and T. Li, On naturalness of the MSSM and NMSSM, JHEP 11 (2012) 024 [arXiv:1201.5305] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    K.A. Olive, The impact of XENON100 and the LHC on supersymmetric dark matter, J. Phys. Conf. Ser. 384 (2012) 012010 [arXiv:1202.2324] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    J. Ellis and K.A. Olive, Revisiting the Higgs mass and dark matter in the CMSSM, Eur. Phys. J. C 72 (2012) 2005 [arXiv:1202.3262] [INSPIRE].ADSGoogle Scholar
  44. [44]
    H. Baer, V. Barger and A. Mustafayev, Neutralino dark matter in mSUGRA/CMSSM with a 125 GeV light Higgs scalar, JHEP 05 (2012) 091 [arXiv:1202.4038] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    J.-J. Cao, Z.-X. Heng, J.M. Yang, Y.-M. Zhang and J.-Y. Zhu, A SM-like Higgs near 125 GeV in low energy SUSY: a comparative study for MSSM and NMSSM, JHEP 03 (2012) 086 [arXiv:1202.5821] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    F. Jegerlehner, Implications of low and high energy measurements on SUSY models, Frascati Phys. Ser. 54 (2012) 42 [arXiv:1203.0806] [INSPIRE].Google Scholar
  47. [47]
    Z. Kang, T. Li, T. Liu, C. Tong and J.M. Yang, A heavy SM-like Higgs and a Light Stop from Yukawa-Deflected Gauge Mediation, Phys. Rev. D 86 (2012) 095020 [arXiv:1203.2336] [INSPIRE].ADSGoogle Scholar
  48. [48]
    D. Curtin, P. Jaiswal and P. Meade, Excluding electroweak baryogenesis in the MSSM, JHEP 08 (2012) 005 [arXiv:1203.2932] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    T. Cohen, D.E. Morrissey and A. Pierce, Electroweak baryogenesis and Higgs signatures, Phys. Rev. D 86 (2012) 013009 [arXiv:1203.2924] [INSPIRE].ADSGoogle Scholar
  50. [50]
    N.D. Christensen, T. Han and S. Su, MSSM Higgs bosons at the LHC, Phys. Rev. D 85 (2012) 115018 [arXiv:1203.3207] [INSPIRE].ADSGoogle Scholar
  51. [51]
    F. Boudjema and G.D. La Rochelle, Beyond the MSSM Higgs bosons at 125 GeV, Phys. Rev. D 86 (2012) 015018 [arXiv:1203.3141] [INSPIRE].ADSGoogle Scholar
  52. [52]
    A. Fowlie et al., The CMSSM favoring new territories: the impact of new LHC limits and a 125 GeV Higgs, Phys. Rev. D 86 (2012) 075010 [arXiv:1206.0264] [INSPIRE].ADSGoogle Scholar
  53. [53]
    J.F. Gunion, Y. Jiang and S. Kraml, The constrained NMSSM and Higgs near 125 GeV, Phys. Lett. B 710 (2012) 454 [arXiv:1201.0982] [INSPIRE].ADSGoogle Scholar
  54. [54]
    S. King, M. Muhlleitner and R. Nevzorov, NMSSM Higgs Benchmarks Near 125 GeV, Nucl. Phys. B 860 (2012) 207 [arXiv:1201.2671] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    T.G. Rizzo, Gauge Kinetic Mixing in the E 6 SSM, Phys. Rev. D 85 (2012) 055010 [arXiv:1201.2898] [INSPIRE].ADSGoogle Scholar
  56. [56]
    C.-F. Chang, K. Cheung, Y.-C. Lin and T.-C. Yuan, Mimicking the standard model Higgs boson in UMSSM, JHEP 06 (2012) 128 [arXiv:1202.0054] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    D.A. Vasquez et al., The 125 GeV Higgs in the NMSSM in light of LHC results and astrophysics constraints, Phys. Rev. D 86 (2012) 035023 [arXiv:1203.3446] [INSPIRE].ADSGoogle Scholar
  58. [58]
    R.S. Gupta, H. Rzehak and J.D. Wells, How well do we need to measure Higgs boson couplings?, Phys. Rev. D 86 (2012) 095001 [arXiv:1206.3560] [INSPIRE].ADSGoogle Scholar
  59. [59]
    P. Draper, P. Meade, M. Reece and D. Shih, Implications of a 125 GeV Higgs for the MSSM and Low-Scale SUSY Breaking, Phys. Rev. D 85 (2012) 095007 [arXiv:1112.3068] [INSPIRE].ADSGoogle Scholar
  60. [60]
    L.J. Hall, D. Pinner and J.T. Ruderman, A natural SUSY Higgs near 126 GeV, JHEP 04 (2012) 131 [arXiv:1112.2703] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    M. Farina, C. Grojean and E. Salvioni, (Dys)Zphilia or a custodial breaking Higgs at the LHC, JHEP 07 (2012) 012 [arXiv:1205.0011] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    M. Drees, R. Godbole and P. Roy, Theory and phenomenology of sparticles: An account of four-dimensional N = 1 supersymmetry in high energy physics, World Scientific, Singapore (2004).Google Scholar
  63. [63]
    J. Ellis, T. Hahn, S. Heinemeyer, K. Olive and G. Weiglein, WMAP-compliant Benchmark surfaces for MSSM Higgs bosons, JHEP 10 (2007) 092 [arXiv:0709.0098] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    R. Barbieri and G. Giudice, Upper bounds on supersymmetric particle masses, Nucl. Phys. B 306 (1988) 63 [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    R. Kitano and Y. Nomura, Supersymmetry, naturalness and signatures at the LHC, Phys. Rev. D 73 (2006) 095004 [hep-ph/0602096] [INSPIRE].ADSGoogle Scholar
  66. [66]
    M.A. Shifman, A. Vainshtein, M. Voloshin and V.I. Zakharov, Low-energy theorems for Higgs boson couplings to photons, Sov. J. Nucl. Phys. 30 (1979) 711 [INSPIRE].Google Scholar
  67. [67]
    R. Dermisek and I. Low, Probing the stop sector and the sanity of the MSSM with the Higgs boson at the LHC, Phys. Rev. D 77 (2008) 035012 [hep-ph/0701235] [INSPIRE].ADSGoogle Scholar
  68. [68]
    A. Arvanitaki and G. Villadoro, A non standard model Higgs at the LHC as a sign of naturalness, JHEP 02 (2012) 144 [arXiv:1112.4835] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    Heavy Flavor Averaging Group collaboration, D. Asner et al., Averages of b-hadron, c-hadron and τ-lepton properties, arXiv:1010.1589 [INSPIRE].
  70. [70]
    M. Benzke, S.J. Lee, M. Neubert and G. Paz, Factorization at Subleading Power and Irreducible Uncertainties in \( \overline{B}\to {X_s}\gamma \) Decay, JHEP 08 (2010) 099 [arXiv:1003.5012] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    M. Misiak et al., Estimate of \( B\left( {\overline{B}\to {X_s}\gamma } \right) \) at \( O\left( {\alpha_s^2} \right) \), Phys. Rev. Lett. 98 (2007) 022002 [hep-ph/0609232] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    M. Perelstein and C. Spethmann, A collider signature of the supersymmetric golden region, JHEP 04 (2007) 070 [hep-ph/0702038] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    E. Lunghi and J. Matias, Huge right-handed current effects in BK *() + in supersymmetry, JHEP 04 (2007) 058 [hep-ph/0612166] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    J. Gunion, G. Gamberini and S. Novaes, Can the Higgs bosons of the minimal supersymmetric model be detected at a hadron collider via two photon decays?, Phys. Rev. D 38 (1988) 3481 [INSPIRE].ADSGoogle Scholar
  75. [75]
    A. Djouadi, V. Driesen, W. Hollik and J.I. Illana, The coupling of the lightest SUSY Higgs boson to two photons in the decoupling regime, Eur. Phys. J. C 1 (1998) 149 [hep-ph/9612362] [INSPIRE].ADSGoogle Scholar
  76. [76]
    M.A. Diaz and P. Fileviez Perez, Can we distinguish between h(SM) and h0 in split supersymmetry?, J. Phys. G 31 (2005) 563 [hep-ph/0412066] [INSPIRE].ADSGoogle Scholar
  77. [77]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].ADSGoogle Scholar
  78. [78]
    K. Blum and R.T. D’Agnolo, 2 Higgs or not 2 Higgs, Phys. Lett. B 714 (2012) 66 [arXiv:1202.2364] [INSPIRE].ADSGoogle Scholar
  79. [79]
    M. Carena, S. Gori, N.R. Shah and C.E. Wagner, A 125 GeV SM-like Higgs in the MSSM and the γγ rate, JHEP 03 (2012) 014 [arXiv:1112.3336] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    M. Carena, S. Gori, N.R. Shah, C.E. Wagner and L.-T. Wang, Light Stau phenomenology and the Higgs γγ rate, JHEP 07 (2012) 175 [arXiv:1205.5842] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    J.F. Gunion and H.E. Haber, The CP conserving two Higgs doublet model: the approach to the decoupling limit, Phys. Rev. D 67 (2003) 075019 [hep-ph/0207010] [INSPIRE].ADSGoogle Scholar
  82. [82]
    G. Branco et al., Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    L. Randall, Two Higgs models for large tan β and heavy second Higgs, JHEP 02 (2008) 084 [arXiv:0711.4360] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    M.S. Carena, J. Espinosa, M. Quirós and C. Wagner, Analytical expressions for radiatively corrected Higgs masses and couplings in the MSSM, Phys. Lett. B 355 (1995) 209 [hep-ph/9504316] [INSPIRE].ADSGoogle Scholar
  85. [85]
    L.J. Hall, R. Rattazzi and U. Sarid, The top quark mass in supersymmetric SO(10) unification, Phys. Rev. D 50 (1994) 7048 [hep-ph/9306309] [INSPIRE].ADSGoogle Scholar
  86. [86]
    P. Batra, A. Delgado, D.E. Kaplan and T.M. Tait, The Higgs mass bound in gauge extensions of the minimal supersymmetric standard model, JHEP 02 (2004) 043 [hep-ph/0309149] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    A. Maloney, A. Pierce and J.G. Wacker, D-terms, unification and the Higgs mass, JHEP 06 (2006) 034 [hep-ph/0409127] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  88. [88]
    M. Cvetič, D.A. Demir, J. Espinosa, L. Everett and P. Langacker, Electroweak breaking and the mu problem in supergravity models with an additional U(1), Phys. Rev. D 56 (1997) 2861 [Erratum ibid. D 58 (1998) 119905] [hep-ph/9703317] [INSPIRE].
  89. [89]
    D.E. Morrissey and J.D. Wells, The tension between gauge coupling unification, the Higgs boson mass and a gauge-breaking origin of the supersymmetric mu-term, Phys. Rev. D 74 (2006) 015008 [hep-ph/0512019] [INSPIRE].ADSGoogle Scholar
  90. [90]
    M. Dine, N. Seiberg and S. Thomas, Higgs physics as a window beyond the MSSM (BMSSM), Phys. Rev. D 76 (2007) 095004 [arXiv:0707.0005] [INSPIRE].ADSGoogle Scholar
  91. [91]
    K. Blum, C. Delaunay and Y. Hochberg, Vacuum (Meta)Stability Beyond the MSSM, Phys. Rev. D 80 (2009) 075004 [arXiv:0905.1701] [INSPIRE].ADSGoogle Scholar
  92. [92]
    U. Ellwanger and C. Hugonie, Higgs bosons near 125 GeV in the NMSSM with constraints at the GUT scale, Adv. High Energy Phys. 2012 (2012) 625389 [arXiv:1203.5048] [INSPIRE].Google Scholar
  93. [93]
    M. Klute, R. Lafaye, T. Plehn, M. Rauch and D. Zerwas, Measuring Higgs couplings from LHC data, Phys. Rev. Lett. 109 (2012) 101801 [arXiv:1205.2699] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    M.E. Peskin, Comparison of LHC and ILC Capabilities for Higgs Boson Coupling Measurements, arXiv:1207.2516 [INSPIRE].
  95. [95]
    CMS collaboration, Search for the standard model Higgs boson decaying to a W pair in the fully leptonic final state in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 710 (2012) 91 [arXiv:1202.1489] [INSPIRE].ADSGoogle Scholar
  96. [96]
    ATLAS collaboration, Search for the Standard Model Higgs boson in the HWW (*)ℓνℓν decay mode with 4.7/fb of ATLAS data at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 716 (2012) 62 [arXiv:1206.0756] [INSPIRE].ADSGoogle Scholar
  97. [97]
    CMS collaboration, Search for neutral Higgs bosons decaying to τ pairs in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 713 (2012) 68 [arXiv:1202.4083] [INSPIRE].ADSGoogle Scholar
  98. [98]
    ATLAS collaboration, Search for the Standard Model Higgs boson in the Hτ + τ decay mode with 4.7 fb −1 of ATLAS data at 7 TeV, ATLAS-CONF-2012-014 (2012).
  99. [99]
    CMS collaboration, Search for the standard model Higgs boson decaying to bottom quarks in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 710 (2012) 284 [arXiv:1202.4195] [INSPIRE].ADSGoogle Scholar
  100. [100]
    ATLAS collaboration, Search for the Standard Model Higgs boson produced in association with a vector boson and decaying to a b-quark pair using up to 4.7 fb 1 of pp collision data at \( \sqrt{s}=7 \) TeV with the ATLAS detector at the LHC, ATLAS-CONF-2012-015 (2012).
  101. [101]
    CDF collaboration, Combined Upper Limit on Standard Model Higgs Boson Production at CDF for March 2012, http://www-cdf.fnal.gov/physics/new/hdg/Results_files/results/cdfcomb_mar2012/.
  102. [102]
    D0 collaboration, Combined Search for the Standard Model Higgs Boson from the D0 Experiment in up to 9.7 f b −1 of Data, D0 Note 6304-CONF, http://www-d0.fnal.gov/Run2Physics/WWW/results/prelim/HIGGS/H128/H128.pdf.
  103. [103]
    CMS collaboration, Combination of SM, SM4, FP Higgs boson searches, CMS-PAS-HIG-12-008 (2012).
  104. [104]
    ATLAS collaboration, An update to the combined search for the Standard Model Higgs boson with the ATLAS detector at the LHC using up to 4.9 fb 1 of pp collision data at \( \sqrt{s}=7 \) TeV, ATLAS-CONF-2012-019 (2012).
  105. [105]
    R. Lafaye, T. Plehn, M. Rauch, D. Zerwas and M. Dührssen, Measuring the Higgs sector, JHEP 08 (2009) 009 [arXiv:0904.3866] [INSPIRE].ADSCrossRefGoogle Scholar
  106. [106]
    P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Reconstructing Higgs boson properties from the LHC and Tevatron data, JHEP 06 (2012) 117 [arXiv:1203.4254] [INSPIRE].ADSCrossRefGoogle Scholar
  107. [107]
    D. Carmi, A. Falkowski, E. Kuflik and T. Volansky, Interpreting LHC Higgs results from natural new physics perspective, JHEP 07 (2012) 136 [arXiv:1202.3144] [INSPIRE].ADSCrossRefGoogle Scholar
  108. [108]
    J. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, Fingerprinting Higgs suspects at the LHC, JHEP 05 (2012) 097 [arXiv:1202.3697] [INSPIRE].ADSCrossRefGoogle Scholar
  109. [109]
    J. Ellis and T. You, Global analysis of experimental constraints on a possible Higgs-like particle with mass ~ 125 GeV, JHEP 06 (2012) 140 [arXiv:1204.0464] [INSPIRE].ADSCrossRefGoogle Scholar
  110. [110]
    A. Azatov, R. Contino and J. Galloway, Model-independent bounds on a light Higgs, JHEP 04 (2012) 127 [arXiv:1202.3415] [INSPIRE].ADSCrossRefGoogle Scholar
  111. [111]
    A. Azatov et al., Determining Higgs couplings with a model-independent analysis of hγγ, JHEP 06 (2012) 134 [arXiv:1204.4817] [INSPIRE].ADSCrossRefGoogle Scholar
  112. [112]
    A. Azatov, S. Chang, N. Craig and J. Galloway, Higgs fits preference for suppressed down-type couplings: implications for supersymmetry, Phys. Rev. D 86 (2012) 075033 [arXiv:1206.1058] [INSPIRE].ADSGoogle Scholar
  113. [113]
    M. Carena, K. Kong, E. Ponton and J. Zurita, Supersymmetric Higgs bosons and beyond, Phys. Rev. D 81 (2010) 015001 [arXiv:0909.5434] [INSPIRE].ADSGoogle Scholar
  114. [114]
    R.S. Chivukula, H.-J. He, J. Howard and E.H. Simmons, The structure of electroweak corrections due to extended gauge symmetries, Phys. Rev. D 69 (2004) 015009 [hep-ph/0307209] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA 2013

Authors and Affiliations

  • Kfir Blum
    • 1
  • Raffaele Tito D’Agnolo
    • 1
    • 2
    • 3
  • JiJi Fan
    • 4
  1. 1.School of Natural SciencesInstitute for Advanced StudyPrincetonUSA
  2. 2.Scuola Normale Superiore and INFNPisaItaly
  3. 3.CERN, European Organization for Nuclear ResearchGenevaSwitzerland
  4. 4.Department of PhysicsPrinceton UniversityPrincetonUSA

Personalised recommendations