Advertisement

Nonextremal black holes in gauged supergravity and the real formulation of special geometry

  • Dietmar KlemmEmail author
  • Owen Vaughan
Article

Abstract

We give a rather general recipe for constructing nonextremal black hole solutions to \( \mathcal{N}=2 \), D = 4 gauged supergravity coupled to abelian vector multiplets. This problem simplifies considerably if one uses the formalism developed in [1], based on dimensional reduction and the real formulation of special geometry. We use this to find new nonextremal black holes for several choices of the prepotential, that generalize the BPS solutions found in [2]. Some physical properties of these black holes are also discussed.

Keywords

Black Holes in String Theory AdS-CFT Correspondence Black Holes Superstring Vacua 

References

  1. [1]
    T. Mohaupt and O. Vaughan, The Hesse potential, the c-map and black hole solutions, JHEP 07 (2012) 163 [arXiv:1112.2876] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    S.L. Cacciatori and D. Klemm, Supersymmetric AdS 4 black holes and attractors, JHEP 01 (2010) 085 [arXiv:0911.4926] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    M. Duff and J.T. Liu, Anti-de Sitter black holes in gauged N = 8 supergravity, Nucl. Phys. B 554 (1999) 237 [hep-th/9901149] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    Z.-W. Chong, M. Cvetič, H. Lü and C. Pope, Charged rotating black holes in four-dimensional gauged and ungauged supergravities, Nucl. Phys. B 717 (2005) 246 [hep-th/0411045] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    D.D. Chow, Single-charge rotating black holes in four-dimensional gauged supergravity, Class. Quant. Grav. 28 (2011) 032001 [arXiv:1011.2202] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    D.D. Chow, Two-charge rotating black holes in four-dimensional gauged supergravity, Class. Quant. Grav. 28 (2011) 175004 [arXiv:1012.1851] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    S.L. Cacciatori, D. Klemm, D.S. Mansi and E. Zorzan, All timelike supersymmetric solutions of N = 2, D = 4 gauged supergravity coupled to abelian vector multiplets, JHEP 05 (2008) 097 [arXiv:0804.0009] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    D. Klemm and E. Zorzan, All null supersymmetric backgrounds of N = 2, D = 4 gauged supergravity coupled to abelian vector multiplets, Class. Quant. Grav. 26 (2009) 145018 [arXiv:0902.4186] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    D. Klemm and E. Zorzan, The timelike half-supersymmetric backgrounds of N = 2, D = 4 supergravity with Fayet-Iliopoulos gauging, Phys. Rev. D 82 (2010) 045012 [arXiv:1003.2974] [INSPIRE].ADSGoogle Scholar
  11. [11]
    P. Meessen and T. Ortín, Supersymmetric solutions to gauged N = 2 D = 4 SUGRA: the full timelike shebang, Nucl. Phys. B 863 (2012) 65 [arXiv:1204.0493] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    G. Dall’Agata and A. Gnecchi, Flow equations and attractors for black holes in N = 2 U(1) gauged supergravity, JHEP 03 (2011) 037 [arXiv:1012.3756] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    K. Hristov and S. Vandoren, Static supersymmetric black holes in AdS 4 with spherical symmetry, JHEP 04 (2011) 047 [arXiv:1012.4314] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    D. Klemm, Rotating BPS black holes in matter-coupled AdS 4 supergravity, JHEP 07 (2011) 019 [arXiv:1103.4699] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    M. Colleoni and D. Klemm, Nut-charged black holes in matter-coupled N = 2, D = 4 gauged supergravity, Phys. Rev. D 85 (2012) 126003 [arXiv:1203.6179] [INSPIRE].ADSGoogle Scholar
  16. [16]
    W. Sabra, Anti-de Sitter BPS black holes in N = 2 gauged supergravity, Phys. Lett. B 458 (1999) 36 [hep-th/9903143] [INSPIRE].MathSciNetADSGoogle Scholar
  17. [17]
    K. Hristov, H. Looyestijn and S. Vandoren, BPS black holes in N = 2 D = 4 gauged supergravities, JHEP 08 (2010) 103 [arXiv:1005.3650] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    T. Mohaupt and K. Waite, Instantons, black holes and harmonic functions, JHEP 10 (2009) 058 [arXiv:0906.3451] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    T. Mohaupt and O. Vaughan, Non-extremal Black Holes, Harmonic Functions and Attractor Equations, Class. Quant. Grav. 27 (2010) 235008 [arXiv:1006.3439] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    T. Mohaupt and O. Vaughan, Developments in special geometry, J. Phys. Conf. Ser. 343 (2012) 012078 [arXiv:1112.2873] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    P. Meessen, T. Ortín, J. Perz and C. Shahbazi, H-FGK formalism for black-hole solutions of N =2, D=4 and D=5 supergravity, Phys. Lett. B 709(2012) 260[arXiv:1112.3332] [INSPIRE].
  22. [22]
    P. Meessen, T. Ortín, J. Perz and C. Shahbazi, Black holes and black strings of N = 2, D = 5 supergravity in the H-FGK formalism, JHEP 09 (2012) 001 [arXiv:1204.0507] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    D.S. Freed, Special Kähler manifolds, Commun. Math. Phys. 203 (1999) 31 [hep-th/9712042] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  24. [24]
    V. Cortés, A holomorphic representation formula for parabolic hyperspheres, in proceedings of international conference PDEs, Submanifolds and Affine Differential Geometry, volume 57, B. Opozda, U. Simon and M. Wiehe eds., Banach Center Publications, Polish Academy of Sciences, Institute of Mathematics, Warsaw (2000), pg. 11-16.Google Scholar
  25. [25]
    L. Romans, Supersymmetric, cold and lukewarm black holes in cosmological Einstein-Maxwell theory, Nucl. Phys. B 383 (1992) 395 [hep-th/9203018] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    M.M. Caldarelli and D. Klemm, Supersymmetry of Anti-de Sitter black holes, Nucl. Phys. B 545 (1999) 434 [hep-th/9808097] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    H. Lü, C. Pope and J.F. Vazquez-Poritz, From AdS black holes to supersymmetric flux branes, Nucl. Phys. B 709 (2005) 47 [hep-th/0307001] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    C.M. Miller, K. Schalm and E.J. Weinberg, Nonextremal black holes are BPS, Phys. Rev. D 76 (2007) 044001 [hep-th/0612308] [INSPIRE].MathSciNetADSGoogle Scholar
  29. [29]
    B. Janssen, P. Smyth, T. Van Riet and B. Vercnocke, A First-order formalism for timelike and spacelike brane solutions, JHEP 04 (2008) 007 [arXiv:0712.2808] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    G. Cardoso and V. Grass, On five-dimensional non-extremal charged black holes and FRW cosmology, Nucl. Phys. B 803 (2008) 209 [arXiv:0803.2819] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    L. Andrianopoli, R. D’Auria, E. Orazi and M. Trigiante, First Order Description of D = 4 static Black Holes and the Hamilton-Jacobi equation, Nucl. Phys. B 833 (2010) 1 [arXiv:0905.3938] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    P. Galli, T. Ortín, J. Perz and C.S. Shahbazi, Non-extremal black holes of N = 2, D = 4 supergravity, JHEP 07 (2011) 041 [arXiv:1105.3311] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    D. Klemm and O. Vaughan, Nonextremal black holes in gauged supergravity and the real formulation of special geometry II, in preparation.Google Scholar
  34. [34]
    M. Cvetič, G. Gibbons and C. Pope, Universal Area Product Formulae for Rotating and Charged Black Holes in Four and Higher Dimensions, Phys. Rev. Lett. 106 (2011) 121301 [arXiv:1011.0008] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    P. Breitenlohner, D. Maison and G.W. Gibbons, Four-Dimensional Black Holes from Kaluza-Klein Theories, Commun. Math. Phys. 120 (1988) 295 [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  36. [36]
    P. Meessen and T. Ortín, Non-Extremal Black Holes of N = 2, d = 5 Supergravity, Phys. Lett. B 707 (2012) 178 [arXiv:1107.5454] [INSPIRE].ADSGoogle Scholar
  37. [37]
    S. Ferrara, G.W. Gibbons and R. Kallosh, Black holes and critical points in moduli space, Nucl. Phys. B 500 (1997) 75 [hep-th/9702103] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Dipartimento di FisicaUniversità di MilanoMilanoItaly
  2. 2.INFN, Sezione di MilanoMilanoItaly
  3. 3.Department of Mathematical SciencesUniversity of LiverpoolLiverpoolU.K.
  4. 4.Department of Mathematics and Center for Mathematical PhysicsUniversity of HamburgHamburgGermany

Personalised recommendations