Advertisement

A transfer matrix method for resonances in Randall-Sundrum models III: an analytical comparison

  • G. AlencarEmail author
  • R. R. Landim
  • M. O. Tahim
  • R. N. Costa Filho
Article

Abstract

The transfer matrix method is used to analyze resonances in Randall-Sundrum models. Although it has successfully been used previously by us we provide here a comparison between the numerical and analytical models. To reach this we first find new exact solution for the scalar, gauge, Kalb-Ramond and q-form fields. Them we calculate numerically the resonances by the transfer matrix method and compare with the analytical result. For completeness, this is done for models with and without the dilaton coupling. The results show a perfect agreement between the analytical and numerical methods.

Keywords

Field Theories in Higher Dimensions p-branes 

References

  1. [1]
    L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. [2]
    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. [3]
    D. Bazeia, A.R. Gomes, L. Losano and R. Menezes, Braneworld models of scalar fields with generalized dynamics, Phys. Lett. B 671 (2009) 402 [arXiv:0808.1815] [INSPIRE].MathSciNetADSGoogle Scholar
  4. [4]
    V.I. Afonso, D. Bazeia, R. Menezes and A.Y. Petrov, f (R)-brane, Phys. Lett. B 658 (2007) 71 [arXiv:0710.3790] [INSPIRE].MathSciNetADSGoogle Scholar
  5. [5]
    D. Bazeia and L. Losano, Deformed defects with applications to braneworlds, Phys. Rev. D 73 (2006) 025016 [hep-th/0511193] [INSPIRE].MathSciNetADSGoogle Scholar
  6. [6]
    D. Bazeia and A.R. Gomes, Bloch brane, JHEP 05 (2004) 012 [hep-th/0403141] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    R.C. Fonseca, F.A. Brito and L. Losano, 4D gravity on a non-BPS bent dilatonic brane, JCAP 01 (2012) 032 [arXiv:1106.5719] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    R.C. Fonseca, F.A. Brito and L. Losano, 4D gravity on a BPS brane in 5D AdS-Minkowski space, Phys. Lett. B 697 (2011) 493 [arXiv:1012.2349] [INSPIRE].MathSciNetADSGoogle Scholar
  9. [9]
    J. Yang, Y.-L. Li, Y. Zhong and Y. Li, Thick brane split caused by spacetime torsion, Phys. Rev. D 85 (2012) 084033 [arXiv:1202.0129] [INSPIRE].ADSGoogle Scholar
  10. [10]
    C.A.S. Almeida, M.M. Ferreira Jr., A.R. Gomes and R. Casana, Fermion localization and resonances on two-field thick branes, Phys. Rev. D 79 (2009) 125022 [arXiv:0901.3543] [INSPIRE].MathSciNetADSGoogle Scholar
  11. [11]
    L.J.S. Sousa, W.T. Cruz and C.A.S. Almeida, Tensor gauge field localization on a string-like defect, Phys. Lett. B 711 (2012) 97 [arXiv:1203.5149] [INSPIRE].MathSciNetADSGoogle Scholar
  12. [12]
    Y.-X. Liu, H. Guo, C.-E. Fu and H.-T. Li, Localization of bulk matters on a thick anti-de Sitter brane, Phys. Rev. D 84 (2011) 044033 [arXiv:1101.4145] [INSPIRE].ADSGoogle Scholar
  13. [13]
    H.R. Christiansen, M.S. Cunha and M.O. Tahim, Exact solutions for a Maxwell-Kalb-Ramond action with dilaton: localization of massless and massive modes in a sine-Gordon brane-world, Phys. Rev. D 82 (2010) 085023 [arXiv:1006.1366] [INSPIRE].ADSGoogle Scholar
  14. [14]
    L.B. Castro, Fermion localization on two-field thick branes, Phys. Rev. D 83 (2011) 045002 [arXiv:1008.3665] [INSPIRE].ADSGoogle Scholar
  15. [15]
    Z.-H. Zhao, Y.-X. Liu, H.-T. Li and Y.-Q. Wang, Effects of the variation of mass on fermion localization and resonances on thick branes, Phys. Rev. D 82 (2010) 084030 [arXiv:1004.2181] [INSPIRE].ADSGoogle Scholar
  16. [16]
    Y.-X. Liu, C.-E. Fu, H. Guo, S.-W. Wei and Z.-H. Zhao, Bulk matters on a GRS-inspired braneworld, JCAP 12 (2010) 031 [arXiv:1002.2130] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    A.E.R. Chumbes, J.M. Hoff da Silva and M.B. Hott, A model to localize gauge and tensor fields on thick branes, Phys. Rev. D 85 (2012) 085003 [arXiv:1108.3821] [INSPIRE].ADSGoogle Scholar
  18. [18]
    J.M. Hoff da Silva, Two-branes with variable tension model and the effective Newtonian constant, Phys. Rev. D 83 (2011) 066001 [arXiv:1101.4214] [INSPIRE].ADSGoogle Scholar
  19. [19]
    M.C.B. Abdalla, M.E.X. Guimaraes and J.M. Hoff da Silva, Positive tension 3-branes in an AdS 5 bulk, JHEP 09 (2010) 051 [arXiv:1001.1075] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    C. Csáki, J. Erlich, T.J. Hollowood and Y. Shirman, Universal aspects of gravity localized on thick branes, Nucl. Phys. B 581 (2000) 309 [hep-th/0001033] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    D. Bazeia, A.R. Gomes and L. Losano, Gravity localization on thick branes: a numerical approach, Int. J. Mod. Phys. A 24 (2009) 1135 [arXiv:0708.3530] [INSPIRE].ADSGoogle Scholar
  22. [22]
    Y.-X. Liu, J. Yang, Z.-H. Zhao, C.-E. Fu and Y.-S. Duan, Fermion localization and resonances on a de Sitter thick brane, Phys. Rev. D 80 (2009) 065019 [arXiv:0904.1785] [INSPIRE].ADSGoogle Scholar
  23. [23]
    Z.-H. Zhao, Y.-X. Liu and H.-T. Li, Fermion localization on asymmetric two-field thick branes, Class. Quant. Grav. 27 (2010) 185001 [arXiv:0911.2572] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    J. Liang and Y.-S. Duan, Localization of matter and fermion resonances on double walls, Phys. Lett. B 681 (2009) 172 [INSPIRE].ADSGoogle Scholar
  25. [25]
    Z.-H. Zhao, Y.-X. Liu, Y.-Q. Wang and H.-T. Li, Effects of temperature on thick branes and the fermion (quasi-)localization, JHEP 06 (2011) 045 [arXiv:1102.4894] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    H.-T. Li, Y.-X. Liu, Z.-H. Zhao and H. Guo, Fermion resonances on a thick brane with a piecewise warp factor, Phys. Rev. D 83 (2011) 045006 [arXiv:1006.4240] [INSPIRE].ADSGoogle Scholar
  27. [27]
    H. Guo, Y.-X. Liu, Z.-H. Zhao and F.-W. Chen, Thick branes with a non-minimally coupled bulk-scalar field, Phys. Rev. D 85 (2012) 124033 [arXiv:1106.5216] [INSPIRE].ADSGoogle Scholar
  28. [28]
    Y.-X. Liu, Y. Zhong, Z.-H. Zhao and H.-T. Li, Domain wall brane in squared curvature gravity, JHEP 06 (2011) 135 [arXiv:1104.3188] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    Y.-X. Liu, H.-T. Li, Z.-H. Zhao, J.-X. Li and J.-R. Ren, Fermion resonances on multi-field thick branes, JHEP 10 (2009) 091 [arXiv:0909.2312] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    R.A.C. Correa, A. de Souza Dutra and M.B. Hott, Fermion localization on degenerate and critical branes, Class. Quant. Grav. 28 (2011) 155012 [arXiv:1011.1849] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    L.B. Castro and L.A. Meza, Fermion localization on branes with generalized dynamics, arXiv:1011.5872 [INSPIRE].
  32. [32]
    A.E.R. Chumbes, A.E.O. Vasquez and M.B. Hott, Fermion localization on a split brane, Phys. Rev. D 83 (2011) 105010 [arXiv:1012.1480] [INSPIRE].ADSGoogle Scholar
  33. [33]
    L.B. Castro and L.A. Meza, Effect of the variation of mass on fermion localization on thick branes, arXiv:1104.5402 [INSPIRE].
  34. [34]
    R.R. Landim, G. Alencar, M.O. Tahim and R.N.C. Costa Filho, A transfer matrix method for resonances in Randall-Sundrum models, JHEP 08 (2011) 071 [arXiv:1105.5573] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    R.R. Landim, G. Alencar, M.O. Tahim and R.N. Costa Filho, A transfer matrix method for resonances in Randall-Sundrum models II: the deformed case, JHEP 02 (2012) 073 [arXiv:1110.5855] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    M. Cvetič and M. Robnik, Gravity trapping on a finite thickness domain wall: an analytic study, Phys. Rev. D 77 (2008) 124003 [arXiv:0801.0801] [INSPIRE].ADSGoogle Scholar
  37. [37]
    A. Kehagias and K. Tamvakis, Localized gravitons, gauge bosons and chiral fermions in smooth spaces generated by a bounce, Phys. Lett. B 504 (2001) 38 [hep-th/0010112] [INSPIRE].MathSciNetADSGoogle Scholar
  38. [38]
    J. Polchinski, String theory. Vol. 1: An introduction to the bosonic string, Cambridge University Press, Cambridge U.K. (1998) [INSPIRE].Google Scholar
  39. [39]
    J. Polchinski, String theory. Vol. 2: Superstring theory and beyond, Cambridge University Press, Cambridge U.K. (1998) [INSPIRE].Google Scholar
  40. [40]
    P. Van Nieuwenhuizen, Supergravity, Phys. Rept. 68 (1981) 189 [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    A. Smailagic and E. Spallucci, Duality of massive gauge invariant theories in arbitrary space-time dimension, Phys. Rev. D 61 (2000) 067701 [hep-th/9911089] [INSPIRE].MathSciNetADSGoogle Scholar
  42. [42]
    A. Smailagic and E. Spallucci, Dualization of nonAbelian BF model, Phys. Lett. B 489 (2000) 435 [hep-th/0008094] [INSPIRE].MathSciNetADSGoogle Scholar
  43. [43]
    I. Oda and S. Yahikozawa, Linking numbers and variational method, Phys. Lett. B 238 (1990) 272 [INSPIRE].MathSciNetADSGoogle Scholar
  44. [44]
    M. Nakahara, Geometry, topology and physics, Taylor & Francis, Boca Raton U.S.A. (2003) [INSPIRE].zbMATHCrossRefGoogle Scholar
  45. [45]
    S. Kachru, M.B. Schulz and S. Trivedi, Moduli stabilization from fluxes in a simple IIB orientifold, JHEP 10 (2003) 007 [hep-th/0201028] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    I. Antoniadis and T. Maillard, Moduli stabilization from magnetic fluxes in type-I string theory, Nucl. Phys. B 716 (2005) 3 [hep-th/0412008] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  47. [47]
    V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    G. Alencar et al., Antisymmetric tensor fields in codimension two brane-world, Europhys. Lett. 93 (2011) 10003 [arXiv:1009.1183] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    B. Mukhopadhyaya, S. Sen, S. Sen and S. SenGupta, Bulk Kalb-Ramond field in Randall-Sundrum scenario, Phys. Rev. D 70 (2004) 066009 [hep-th/0403098] [INSPIRE].ADSGoogle Scholar
  50. [50]
    B. Mukhopadhyaya, S. Sen and S. SenGupta, Bulk antisymmetric tensor fields in a Randall-Sundrum model, Phys. Rev. D 76 (2007) 121501 [arXiv:0709.3428] [INSPIRE].MathSciNetADSGoogle Scholar
  51. [51]
    G. De Risi, Bouncing cosmology from Kalb-Ramond braneworld, Phys. Rev. D 77 (2008) 044030 [arXiv:0711.3781] [INSPIRE].ADSGoogle Scholar
  52. [52]
    B. Mukhopadhyaya, S. Sen and S. SenGupta, A Randall-Sundrum scenario with bulk dilaton and torsion, Phys. Rev. D 79 (2009) 124029 [arXiv:0903.0722] [INSPIRE].ADSGoogle Scholar
  53. [53]
    G. Alencar, M.O. Tahim, R.R. Landim, C.R. Muniz and R.N. Costa Filho, Bulk antisymmetric tensor fields coupled to a dilaton in a Randall-Sundrum model, Phys. Rev. D 82 (2010) 104053 [arXiv:1005.1691] [INSPIRE].ADSGoogle Scholar
  54. [54]
    R.R. Landim, G. Alencar, M.O. Tahim, M.A.M. Gomes and R.N. Costa Filho, On resonances of q-forms in thick p-branes, Europhys. Lett. 97 (2012) 20003 [arXiv:1010.1548] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    L.D. Landau and E.M. Lifshitz, Course of theoretical physics. Volume 3: Quantum mechanics, non-relativistic theory, Pergamon Press, London-Paris (1958).Google Scholar
  56. [56]
    G.R. Dvali, G. Gabadadze and M. Porrati, Metastable gravitons and infinite volume extra dimensions, Phys. Lett. B 484 (2000) 112 [hep-th/0002190] [INSPIRE].MathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • G. Alencar
    • 1
    Email author
  • R. R. Landim
    • 2
  • M. O. Tahim
    • 1
  • R. N. Costa Filho
    • 2
  1. 1.Universidade Estadual do Ceará, Faculdade de Educação, Ciências e Letras do Sertão CentralQuixadáBrazil
  2. 2.Departamento de FísicaUniversidade Federal do CearáFortalezaBrazil

Personalised recommendations