Advertisement

On NMHV form factors in \( \mathcal{N}=4 \) SYM theory from generalized unitarity

  • L. V. BorkEmail author
Article

Abstract

In this paper a supersymmetric version of a generalized unitarity cut method in application to MHV and NMHV for form factors of operators from the \( \mathcal{N}=4 \) SYM stress-tensor current supermultiplet T AB at one loop is discussed. The explicit answers for 3 and 4 point NMHV form factors at tree and one loop level are obtained. The general structure of n-point NMHV form factor at one loop is discussed as well as the relation between form factor with super momentum equal to zero and the logarithmic derivative of the superamplitude with respect to the coupling constant.

Keywords

Supersymmetric gauge theory Extended Supersymmetry Superspaces Scattering Amplitudes 

References

  1. [1]
    N. Beisert, On yangian symmetry in planar N = 4 SYM, arXiv:1004.5423 [INSPIRE].
  2. [2]
    T. Bargheer, N. Beisert, W. Galleas, F. Loebbert and T. McLoughlin, Exacting N = 4 superconformal symmetry, JHEP 11 (2009) 056 [arXiv:0905.3738] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    N. Beisert, J. Henn, T. McLoughlin and J. Plefka, One-loop superconformal and yangian symmetries of scattering amplitudes in N = 4 super Yang-Mills, JHEP 04 (2010) 085 [arXiv:1002.1733] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    A. Gorsky, Amplitudes in the N = 4 SYM from quantum geometry of the momentum space, Phys. Rev. D 80 (2009) 125002 [arXiv:0905.2058] [INSPIRE].MathSciNetADSGoogle Scholar
  5. [5]
    L.F. Alday, J. Maldacena, A. Sever and P. Vieira, Y-system for scattering amplitudes, J. Phys. A 43 (2010) 485401 [arXiv:1002.2459] [INSPIRE].MathSciNetGoogle Scholar
  6. [6]
    D. Kazakov and A. Kotikov, Total αs correction to deep inelastic scattering cross-section ratio, R = sigma L /sigma t in QCD. Calculation of longitudinal structure function, Nucl. Phys. B 307 (1988) 721 [Erratum ibid. B 345 (1990) 299] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    P. Baikov, K. Chetyrkin, A. Smirnov, V. Smirnov and M. Steinhauser, Quark and gluon form factors to three loops, Phys. Rev. Lett. 102 (2009) 212002 [arXiv:0902.3519] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    T. Gehrmann, E. Glover, T. Huber, N. Ikizlerli and C. Studerus, Calculation of the quark and gluon form factors to three loops in QCD, JHEP 06 (2010) 094 [arXiv:1004.3653] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    W. van Neerven, Infrared behavior of on-shell form-factors in a N = 4 supersymmetric Yang-Mills field theory, Z. Phys. C 30 (1986) 595 [INSPIRE].ADSGoogle Scholar
  10. [10]
    T. Gehrmann, J.M. Henn and T. Huber, The three-loop form factor in N = 4 super Yang-Mills, JHEP 03 (2012) 101 [arXiv:1112.4524] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    K. Selivanov, On tree form-factors in (supersymmetric) Yang-Mills theory, Commun. Math. Phys. 208 (2000) 671 [hep-th/9809046] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. [12]
    J. Maldacena and A. Zhiboedov, Form factors at strong coupling via a Y-system, JHEP 11 (2010) 104 [arXiv:1009.1139] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    L. Bork, D. Kazakov and G. Vartanov, On form factors in N = 4 SYM, JHEP 02 (2011) 063 [arXiv:1011.2440] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    A. Brandhuber, B. Spence, G. Travaglini and G. Yang, Form Factors in N = 4 Super Yang-Mills and Periodic Wilson Loops, JHEP 01 (2011) 134 [arXiv:1011.1899] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    L. Bork, D. Kazakov and G. Vartanov, On MHV form factors in superspace for \( \mathcal{N}=4 \) SYM theory, JHEP 10 (2011) 133 [arXiv:1107.5551] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    A. Brandhuber, O. Gurdogan, R. Mooney, G. Travaglini and G. Yang, Harmony of super form factors, JHEP 10 (2011) 046 [arXiv:1107.5067] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    A. Brandhuber, G. Travaglini and G. Yang, Analytic two-loop form factors in N = 4 SYM, JHEP 05 (2012) 082 [arXiv:1201.4170] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    J.M. Henn, S. Moch and S.G. Naculich, Form factors and scattering amplitudes in N = 4 SYM in dimensional and massive regularizations, JHEP 12 (2011) 024 [arXiv:1109.5057] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    R. Britto, F. Cachazo and B. Feng, Generalized unitarity and one-loop amplitudes in N = 4 super-Yang-Mills, Nucl. Phys. B 725 (2005) 275 [hep-th/0412103] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    A. Brandhuber, P. Heslop and G. Travaglini, A note on dual superconformal symmetry of the N =4 super Yang-Mills S-matrix, Phys. Rev. D 78(2008) 125005 [arXiv:0807.4097] [INSPIRE].MathSciNetADSGoogle Scholar
  21. [21]
    J. Drummond, J. Henn, G. Korchemsky and E. Sokatchev, Generalized unitarity for N = 4 super-amplitudes, arXiv:0808.0491 [INSPIRE].
  22. [22]
    M. Bianchi, H. Elvang and D.Z. Freedman, Generating tree amplitudes in N = 4 SYM and N =8 SG, JHEP 09(2008) 063 [arXiv:0805.0757] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo and J. Trnka, Local integrals for planar scattering amplitudes, JHEP 06 (2012) 125 [arXiv:1012.6032] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    L.J. Dixon, J.M. Drummond and J.M. Henn, Analytic result for the two-loop six-point NMHV amplitude in N = 4 super Yang-Mills theory, JHEP 01 (2012) 024 [arXiv:1111.1704] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    S. Raju, Recursion relations for AdS/CFT correlators, Phys. Rev. D 83 (2011) 126002 [arXiv:1102.4724] [INSPIRE].ADSGoogle Scholar
  26. [26]
    L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP 06 (2007) 064 [arXiv:0705.0303] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    G. Korchemsky, J. Drummond and E. Sokatchev, Conformal properties of four-gluon planar amplitudes and Wilson loops, Nucl. Phys. B 795 (2008) 385 [arXiv:0707.0243] [INSPIRE].MathSciNetADSGoogle Scholar
  28. [28]
    A. Brandhuber, P. Heslop and G. Travaglini, MHV amplitudes in N = 4 super Yang-Mills and Wilson loops, Nucl. Phys. B 794 (2008) 231 [arXiv:0707.1153] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    J. Drummond, J. Henn, G. Korchemsky and E. Sokatchev, On planar gluon amplitudes/Wilson loops duality, Nucl. Phys. B 795 (2008) 52 [arXiv:0709.2368] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    S. Caron-Huot, Notes on the scattering amplitude/Wilson loop duality, JHEP 07 (2011) 058 [arXiv:1010.1167] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    L.F. Alday, D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, An operator product expansion for polygonal null Wilson loops, JHEP 04 (2011) 088 [arXiv:1006.2788] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    A. Sever, P. Vieira and T. Wang, OPE for super loops, JHEP 11 (2011) 051 [arXiv:1108.1575] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    S. Caron-Huot and S. He, Jumpstarting the all-loop S-matrix of planar N = 4 super Yang-Mills, JHEP 07 (2012) 174 [arXiv:1112.1060] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    L. Mason and D. Skinner, The complete planar S-matrix of N = 4 SYM as a Wilson loop in twistor space, JHEP 12 (2010) 018 [arXiv:1009.2225] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    M. Bullimore and D. Skinner, Descent equations for superamplitudes, arXiv:1112.1056 [INSPIRE].
  36. [36]
    B. Eden, P. Heslop, G.P. Korchemsky and E. Sokatchev, The super-correlator/super-amplitude duality: part I, arXiv:1103.3714 [INSPIRE].
  37. [37]
    J. Drummond, J. Henn, G. Korchemsky and E. Sokatchev, Dual superconformal symmetry of scattering amplitudes in N = 4 super-Yang-Mills theory, Nucl. Phys. B 828 (2010) 317 [arXiv:0807.1095] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    R.K. Ellis and G. Zanderighi, Scalar one-loop integrals for QCD, JHEP 02 (2008) 002 [arXiv:0712.1851] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    G. Georgiou, E.N. Glover and V.V. Khoze, Non-MHV tree amplitudes in gauge theory, JHEP 07 (2004) 048 [hep-th/0407027] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    D. Forde, Direct extraction of one-loop integral coefficients, Phys. Rev. D 75 (2007) 125019 [arXiv:0704.1835] [INSPIRE].MathSciNetADSGoogle Scholar
  41. [41]
    N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the simplest quantum field theory?, JHEP 09 (2010) 016 [arXiv:0808.1446] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    T. Kinoshita, Mass singularities of Feynman amplitudes, J. Math. Phys. 3 (1962) 650 [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  43. [43]
    T.D. Lee and M. Nauenberg, Degenerate systems and mass singularities, Phys. Rev. 133 (1964) B1549 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    S.D. Ellis, Z. Kunszt and D.E. Soper, The one jet inclusive cross-section at order \( \alpha_s^3 \) . 1. Gluons only, Phys. Rev. D 40 (1989) 2188 [INSPIRE].ADSGoogle Scholar
  45. [45]
    S.D. Ellis, Z. Kunszt and D.E. Soper, The one jet inclusive cross-section at order \( \alpha_s^3 \) quarks and gluons, Phys. Rev. Lett. 64 (1990) 2121 [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    Z. Kunszt and D.E. Soper, Calculation of jet cross-sections in hadron collisions at order \( \alpha_s^3 \), Phys. Rev. D 46 (1992) 192 [INSPIRE].Google Scholar
  47. [47]
    L. Bork, D. Kazakov, G. Vartanov and A. Zhiboedov, Infrared safe observables in N = 4 super Yang-Mills theory, Phys. Lett. B 681 (2009) 296 [arXiv:0908.0387] [INSPIRE].MathSciNetADSGoogle Scholar
  48. [48]
    L. Bork, D. Kazakov, G. Vartanov and A. Zhiboedov, Construction of infrared finite observables in N = 4 super Yang-Mills theory, Phys. Rev. D 81 (2010) 105028 [arXiv:0911.1617] [INSPIRE].ADSGoogle Scholar
  49. [49]
    L. Bork, D. Kazakov, G. Vartanov and A. Zhiboedov, Infrared finite observables in N = 8 supergravity, arXiv:1008.2302 [INSPIRE].
  50. [50]
    N. Sveshnikov and F. Tkachov, Jets and quantum field theory, Phys. Lett. B 382 (1996) 403 [hep-ph/9512370] [INSPIRE].ADSGoogle Scholar
  51. [51]
    M. Testa, Exploring the light cone through semiinclusive hadronic distributions, JHEP 09 (1998) 006 [hep-ph/9807204] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    G.P. Korchemsky, G. Oderda and G.F. Sterman, Power corrections and nonlocal operators, hep-ph/9708346 [INSPIRE].
  53. [53]
    G.P. Korchemsky and G.F. Sterman, Power corrections to event shapes and factorization, Nucl. Phys. B 555 (1999) 335 [hep-ph/9902341] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    A.V. Belitsky, G. Korchemsky and G.F. Sterman, Energy flow in QCD and event shape functions, Phys. Lett. B 515 (2001) 297 [hep-ph/0106308] [INSPIRE].ADSGoogle Scholar
  55. [55]
    D.M. Hofman and J. Maldacena, Conformal collider physics: Energy and charge correlations, JHEP 05 (2008) 012 [arXiv:0803.1467] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    A. Zhiboedov, unpublished notes (spring 2011).Google Scholar
  57. [57]
    L. Mason and D. Skinner, Dual superconformal invariance, momentum twistors and grassmannians, JHEP 11 (2009) 045 [arXiv:0909.0250] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  58. [58]
    N. Usyukina and A.I. Davydychev, An approach to the evaluation of three and four point ladder diagrams, Phys. Lett. B 298 (1993) 363 [INSPIRE].ADSGoogle Scholar
  59. [59]
    N. Usyukina and A.I. Davydychev, Exact results for three and four point ladder diagrams with an arbitrary number of rungs, Phys. Lett. B 305 (1993) 136 [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Institute for Theoretical and Experimental PhysicsMoscowRussia

Personalised recommendations