Warm inflection

Article

Abstract

While ubiquitous in supersymmetric and string theory models, inflationary scenarios near an inflection point in the scalar potential generically require a severe fine-tuning of a priori unrelated supersymmetry breaking effects. We show that this can be significantly alleviated by the inclusion of dissipative effects that damp the inflaton’s motion and produce a nearly-thermal radiation bath. We focus on the case where the slow-rolling inflaton directly excites heavy virtual modes that then decay into light degrees of freedom, although our main qualitative results should apply in other regimes. Furthermore, our analysis shows that the minimum amount of dissipation required to keep the temperature of the radiation bath above the Hubble rate during inflation is largely independent of the degree of flatness of the potential, although it depends on the field value at the inflection point. We then discuss the relevance of this result to warm inflation model building.

Keywords

Cosmology of Theories beyond the SM Thermal Field Theory Supersymmetric Effective Theories Quantum Dissipative Systems 

References

  1. [1]
    A.H. Guth, The inflationary universe: a possible solution to the horizon and flatness problems, Phys. Rev. D 23 (1981) 347 [INSPIRE].ADSGoogle Scholar
  2. [2]
    A. Albrecht and P.J. Steinhardt, Cosmology for grand unified theories with radiatively induced symmetry breaking, Phys. Rev. Lett. 48 (1982) 1220 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    A.D. Linde, A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems, Phys. Lett. B 108 (1982) 389 [INSPIRE].MathSciNetADSGoogle Scholar
  4. [4]
    D. Baumann and L. McAllister, Advances in inflation in string theory, Ann. Rev. Nucl. Part. Sci. 59 (2009) 67 [arXiv:0901.0265] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    T. Gherghetta, C.F. Kolda and S.P. Martin, Flat directions in the scalar potential of the supersymmetric standard model, Nucl. Phys. B 468 (1996) 37 [hep-ph/9510370] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    R. Allahverdi, K. Enqvist, J. García-Bellido and A. Mazumdar, Gauge invariant MSSM inflaton, Phys. Rev. Lett. 97 (2006) 191304 [hep-ph/0605035] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    R. Allahverdi, A. Kusenko and A. Mazumdar, A-term inflation and the smallness of neutrino masses, JCAP 07 (2007) 018 [hep-ph/0608138] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    J.C. Bueno Sanchez, K. Dimopoulos and D.H. Lyth, A-term inflation and the MSSM, JCAP 01 (2007) 015 [hep-ph/0608299] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    R. Allahverdi, K. Enqvist, J. García-Bellido, A. Jokinen and A. Mazumdar, MSSM flat direction inflation: slow roll, stability, fine tunning and reheating, JCAP 06 (2007) 019 [hep-ph/0610134] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    R. Allahverdi, B. Dutta and A. Mazumdar, Probing the parameter space for an MSSM inflation and the neutralino dark matter, Phys. Rev. D 75 (2007) 075018 [hep-ph/0702112] [INSPIRE].ADSGoogle Scholar
  11. [11]
    R. Allahverdi, B. Dutta and A. Mazumdar, Unifying inflation and dark matter with neutrino masses, Phys. Rev. Lett. 99 (2007) 261301 [arXiv:0708.3983] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    Z. Lalak and K. Turzynski, Back-door fine-tuning in supersymmetric low scale inflation, Phys. Lett. B 659 (2008) 669 [arXiv:0710.0613] [INSPIRE].ADSGoogle Scholar
  13. [13]
    R. Allahverdi, B. Dutta and Y. Santoso, MSSM inflation, dark matter and the LHC, Phys. Rev. D 82 (2010) 035012 [arXiv:1004.2741] [INSPIRE].ADSGoogle Scholar
  14. [14]
    K. Enqvist, A. Mazumdar and P. Stephens, Inflection point inflation within supersymmetry, JCAP 06 (2010) 020 [arXiv:1004.3724] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    R. Allahverdi, S. Downes and B. Dutta, Constructing flat inflationary potentials in supersymmetry, Phys. Rev. D 84 (2011) 101301 [arXiv:1106.5004] [INSPIRE].ADSGoogle Scholar
  16. [16]
    A. Chatterjee and A. Mazumdar, Tuned MSSM Higgses as an inflaton, JCAP 09 (2011) 009 [arXiv:1103.5758] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    C. Boehm, J. Da Silva, A. Mazumdar and E. Pukartas, Probing the supersymmetric inflaton and dark matter link via the CMB, LHC and XENON1T experiments, arXiv:1205.2815 [INSPIRE].
  18. [18]
    S. Hotchkiss, A. Mazumdar and S. Nadathur, Inflection point inflation: WMAP constraints and a solution to the fine-tuning problem, JCAP 06 (2011) 002 [arXiv:1101.6046] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    K. Enqvist, L. Mether and S. Nurmi, Supergravity origin of the MSSM inflation, JCAP 11 (2007) 014 [arXiv:0706.2355] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    A. Mazumdar, S. Nadathur and P. Stephens, Inflation with large supergravity corrections, Phys. Rev. D 85 (2012) 045001 [arXiv:1105.0430] [INSPIRE].ADSGoogle Scholar
  21. [21]
    R. Allahverdi, A.R. Frey and A. Mazumdar, Graceful exit from a stringy landscape via MSSM inflation, Phys. Rev. D 76 (2007) 026001 [hep-th/0701233] [INSPIRE].ADSGoogle Scholar
  22. [22]
    S. Kachru et al., Towards inflation in string theory, JCAP 10 (2003) 013 [hep-th/0308055] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    D. Baumann, A. Dymarsky, S. Kachru, I.R. Klebanov and L. McAllister, Holographic systematics of D-brane inflation, JHEP 03 (2009) 093 [arXiv:0808.2811] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    D. Baumann, A. Dymarsky, S. Kachru, I.R. Klebanov and L. McAllister, Compactification effects in D-brane inflation, Phys. Rev. Lett. 104 (2010) 251602 [arXiv:0912.4268] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    D. Baumann, A. Dymarsky, S. Kachru, I.R. Klebanov and L. McAllister, D3-brane potentials from fluxes in AdS/CFT, JHEP 06 (2010) 072 [arXiv:1001.5028] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    A. Ali, A. Deshamukhya, S. Panda and M. Sami, Inflation with improved D3-brane potential and the fine tunings associated with the model, Eur. Phys. J. C 71 (2011) 1672 [arXiv:1010.1407] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    N. Agarwal, R. Bean, L. McAllister and G. Xu, Universality in D-brane inflation, JCAP 09 (2011) 002 [arXiv:1103.2775] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    J.J. Blanco-Pillado et al., Racetrack inflation, JHEP 11 (2004) 063 [hep-th/0406230] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    A.D. Linde and A. Westphal, Accidental inflation in string theory, JCAP 03 (2008) 005 [arXiv:0712.1610] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    J.J. Blanco-Pillado, M. Gomez-Reino and K. Metallinos, Accidental inflation in the landscape, arXiv:1209.0796 [INSPIRE].
  31. [31]
    A. Berera and L.-Z. Fang, Thermally induced density perturbations in the inflation era, Phys. Rev. Lett. 74 (1995) 1912 [astro-ph/9501024] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    A. Berera, Warm inflation, Phys. Rev. Lett. 75 (1995) 3218 [astro-ph/9509049] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    A. Berera, Thermal properties of an inflationary universe, Phys. Rev. D 54 (1996) 2519 [hep-th/9601134] [INSPIRE].ADSGoogle Scholar
  34. [34]
    L.Z. Fang, Entropy generation in the early universe by dissipative processes near the Higgsphase transitions, Phys. Lett. B 95 (1980) 154 [INSPIRE].ADSGoogle Scholar
  35. [35]
    I.G. Moss, Primordial inflation with spontaneous symmetry breaking, Phys. Lett. B 154 (1985) 120 [INSPIRE].ADSGoogle Scholar
  36. [36]
    J. Yokoyama and K.-I. Maeda, On the dynamics of the power law inflation due to an exponential potential, Phys. Lett. B 207 (1988) 31 [INSPIRE].ADSGoogle Scholar
  37. [37]
    A. Berera, M. Gleiser and R.O. Ramos, Strong dissipative behavior in quantum field theory, Phys. Rev. D 58 (1998) 123508 [hep-ph/9803394] [INSPIRE].ADSGoogle Scholar
  38. [38]
    J. Yokoyama and A.D. Linde, Is warm inflation possible?, Phys. Rev. D 60 (1999) 083509 [hep-ph/9809409] [INSPIRE].ADSGoogle Scholar
  39. [39]
    A. Berera, Warm inflation at arbitrary adiabaticity: a model, an existence proof for inflationary dynamics in quantum field theory, Nucl. Phys. B 585 (2000) 666 [hep-ph/9904409] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    A. Berera and R.O. Ramos, The affinity for scalar fields to dissipate, Phys. Rev. D 63 (2001) 103509 [hep-ph/0101049] [INSPIRE].ADSGoogle Scholar
  41. [41]
    A. Berera and R.O. Ramos, Construction of a robust warm inflation mechanism, Phys. Lett. B 567 (2003) 294 [hep-ph/0210301] [INSPIRE].MathSciNetADSGoogle Scholar
  42. [42]
    L.M. Hall and I.G. Moss, Thermal effects on pure and hybrid inflation, Phys. Rev. D 71 (2005) 023514 [hep-ph/0408323] [INSPIRE].ADSGoogle Scholar
  43. [43]
    A. Berera and R.O. Ramos, Absence of isentropic expansion in various inflation models, Phys. Lett. B 607 (2005) 1 [hep-ph/0308211] [INSPIRE].ADSGoogle Scholar
  44. [44]
    A. Berera and R.O. Ramos, Dynamics of interacting scalar fields in expanding space-time, Phys. Rev. D 71 (2005) 023513 [hep-ph/0406339] [INSPIRE].ADSGoogle Scholar
  45. [45]
    I.G. Moss and C. Xiong, Dissipation coefficients for supersymmetric inflatonary models, hep-ph/0603266 [INSPIRE].
  46. [46]
    A. Berera, I.G. Moss and R.O. Ramos, Warm inflation and its microphysical basis, Rept. Prog. Phys. 72 (2009) 026901 [arXiv:0808.1855] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    I.G. Moss and C. Xiong, On the consistency of warm inflation, JCAP 11 (2008) 023 [arXiv:0808.0261] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    I.G. Moss and C.M. Graham, Particle production and reheating in the inflationary universe, Phys. Rev. D 78 (2008) 123526 [arXiv:0810.2039] [INSPIRE].ADSGoogle Scholar
  49. [49]
    M. Bastero-Gil and A. Berera, Warm inflation model building, Int. J. Mod. Phys. A 24 (2009) 2207 [arXiv:0902.0521] [INSPIRE].ADSGoogle Scholar
  50. [50]
    M. Bastero-Gil, A. Berera and R.O. Ramos, Dissipation coefficients from scalar and fermion quantum field interactions, JCAP 09 (2011) 033 [arXiv:1008.1929] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    M. Bastero-Gil, A. Berera, R.O. Ramos and J.G. Rosa, General dissipation coefficient in low-temperature warm inflation, arXiv:1207.0445 [INSPIRE].
  52. [52]
    H.P. de Oliveira and R.O. Ramos, Dynamical system analysis for inflation with dissipation, Phys. Rev. D 57 (1998) 741 [gr-qc/9710093] [INSPIRE].ADSGoogle Scholar
  53. [53]
    E. Gunzig, R. Maartens and A.V. Nesteruk, Inflationary cosmology and thermodynamics, Class. Quant. Grav. 15 (1998) 923 [astro-ph/9703137] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  54. [54]
    M. Bellini, Power spectrum of the primordial scalar field fluctuations in the warm inflation scenario, Phys. Rev. D 58 (1998) 103518 [Erratum ibid. D 60 (1999) 089901] [INSPIRE].
  55. [55]
    W. Lee and L.-Z. Fang, Mass density perturbations from inflation with thermal dissipation, Phys. Rev. D 59 (1999) 083503 [astro-ph/9901195] [INSPIRE].ADSGoogle Scholar
  56. [56]
    J.M.F. Maia and J.A.S. Lima, Extended warm inflation, Phys. Rev. D 60 (1999) 101301 [astro-ph/9910568] [INSPIRE].ADSGoogle Scholar
  57. [57]
    A.P. Billyard and A.A. Coley, Interactions in scalar field cosmology, Phys. Rev. D 61 (2000) 083503 [astro-ph/9908224] [INSPIRE].MathSciNetADSGoogle Scholar
  58. [58]
    H.P. De Oliveira and S.E. Joras, On perturbations in warm inflation, Phys. Rev. D 64 (2001) 063513 [gr-qc/0103089] [INSPIRE].ADSGoogle Scholar
  59. [59]
    I. Dymnikova and M. Khlopov, Decay of cosmological constant in selfconsistent inflation, Eur. Phys. J. C 20 (2001) 139 [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    L.P. Chimento, A.S. Jakubi, N.A. Zuccala and D. Pavon, Synergistic warm inflation, Phys. Rev. D 65 (2002) 083510 [astro-ph/0201002] [INSPIRE].ADSGoogle Scholar
  61. [61]
    H.P. De Oliveira, Density perturbations in warm inflation and COBE normalization, Phys. Lett. B 526 (2002) 1 [gr-qc/0202045] [INSPIRE].ADSGoogle Scholar
  62. [62]
    R.H. Brandenberger and M. Yamaguchi, Spontaneous baryogenesis in warm inflation, Phys. Rev. D 68 (2003) 023505 [hep-ph/0301270] [INSPIRE].ADSGoogle Scholar
  63. [63]
    R. Jeannerot and M. Postma, Confronting hybrid inflation in supergravity with CMB data, JHEP 05 (2005) 071 [hep-ph/0503146] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  64. [64]
    J.P. Mimoso, A. Nunes and D. Pavon, Asymptotic behavior of the warm inflation scenario with viscous pressure, Phys. Rev. D 73 (2006) 023502 [gr-qc/0512057] [INSPIRE].ADSGoogle Scholar
  65. [65]
    S. del Campo and R. Herrera, Warm inflation in the DGP brane-world model, Phys. Lett. B 653 (2007) 122 [arXiv:0708.1460] [INSPIRE].ADSGoogle Scholar
  66. [66]
    L.M. Hall and H.V. Peiris, Cosmological constraints on dissipative models of inflation, JCAP 01 (2008) 027 [arXiv:0709.2912] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    S. Mohanty and A. Nautiyal, Natural inflation at the GUT scale, Phys. Rev. D 78 (2008) 123515 [arXiv:0807.0317] [INSPIRE].ADSGoogle Scholar
  68. [68]
    R. Herrera and M. Olivares, Warm-logamediate inflationary universe model, Int. J. Mod. Phys. D 21 (2012) 1250047 [arXiv:1205.2365] [INSPIRE].ADSGoogle Scholar
  69. [69]
    M. Badziak and M. Olechowski, Volume modulus inflection point inflation and the gravitino mass problem, JCAP 02 (2009) 010 [arXiv:0810.4251] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    A. Berera and T.W. Kephart, The ubiquitous inflaton in string-inspired models, Phys. Rev. Lett. 83 (1999) 1084 [hep-ph/9904410] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    M. Bastero-Gil, A. Berera, J.B. Dent and T.W. Kephart, Towards realizing warm inflation in string theory, arXiv:0904.2195 [INSPIRE].
  72. [72]
    Y.-F. Cai, J.B. Dent and D.A. Easson, Warm DBI inflation, Phys. Rev. D 83 (2011) 101301 [arXiv:1011.4074] [INSPIRE].ADSGoogle Scholar
  73. [73]
    M. Bastero-Gil, A. Berera and J.G. Rosa, Warming up brane-antibrane inflation, Phys. Rev. D 84 (2011) 103503 [arXiv:1103.5623] [INSPIRE].ADSGoogle Scholar
  74. [74]
    A.N. Taylor and A. Berera, Perturbation spectra in the warm inflationary scenario, Phys. Rev. D 62 (2000) 083517 [astro-ph/0006077] [INSPIRE].ADSGoogle Scholar
  75. [75]
    L.M. Hall, I.G. Moss and A. Berera, Scalar perturbation spectra from warm inflation, Phys. Rev. D 69 (2004) 083525 [astro-ph/0305015] [INSPIRE].ADSGoogle Scholar
  76. [76]
    S. Gupta, A. Berera, A.F. Heavens and S. Matarrese, Non-gaussian signatures in the cosmic background radiation from warm inflation, Phys. Rev. D 66 (2002) 043510 [astro-ph/0205152] [INSPIRE].ADSGoogle Scholar
  77. [77]
    B. Chen, Y. Wang and W. Xue, Inflationary nongaussianity from thermal fluctuations, JCAP 05 (2008) 014 [arXiv:0712.2345] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    I.G. Moss and C. Xiong, Non-gaussianity in fluctuations from warm inflation, JCAP 04 (2007) 007 [astro-ph/0701302] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    I.G. Moss and T. Yeomans, Non-gaussianity in the strong regime of warm inflation, JCAP 08 (2011) 009 [arXiv:1102.2833] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    M. Bastero-Gil, A. Berera, R.O. Ramos and J.G. Rosa, Warm baryogenesis, Phys. Lett. B 712 (2012) 425 [arXiv:1110.3971] [INSPIRE].ADSGoogle Scholar
  81. [81]
    A.N. Taylor and A.R. Liddle, Gravitino production in the warm inflationary scenario, Phys. Rev. D 64 (2001) 023513 [astro-ph/0011365] [INSPIRE].ADSGoogle Scholar
  82. [82]
    J.C. Bueno Sanchez, M. Bastero-Gil, A. Berera, K. Dimopoulos and K. Kohri, The gravitino problem in supersymmetric warm inflation, JCAP 03 (2011) 020 [arXiv:1011.2398] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    S. Bartrum, A. Berera and J.G. Rosa, Gravitino cosmology in supersymmetric warm inflation, arXiv:1208.4276 [INSPIRE].
  84. [84]
    WMAP collaboration, E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    R. Allahverdi and A. Mazumdar, Reheating in supersymmetric high scale inflation, Phys. Rev. D 76 (2007) 103526 [hep-ph/0603244] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Departamento de Física Teórica y del Cosmos and CAFPEUniversidad de GranadaGranadaSpain
  2. 2.Departamento de Física da Universidade de Aveiro and I3NAveiroPortugal

Personalised recommendations