Heterotic wrapping rules

  • Eric A. Bergshoeff
  • Fabio Riccioni


We show that the same wrapping rules that have been derived for the branes of IIA and IIB string theory also apply to the branes of the toroidally compactified heterotic string theory. Moreover, we show that applying these wrapping rules to the IIA theory compactified over K3 is consistent with the well-known duality between the heterotic string theory compactified over T 4 and the IIA string theory compactified over K3.

We derive a simple rule that relates, in any dimension, the T-duality representation of the branes of the toroidally compactified heterotic theory to the relevant R-symmetry representation of the central charges in the supersymmetry algebra. We show that, in the general case, the degeneracy of the BPS conditions of the heterotic branes is twice as large as that of the branes of IIA and IIB string theory.


p-branes String Duality 


  1. [1]
    T. Ortín, Gravity and strings, Cambridge University Press, Cambridge U.K. (2007) [ISBN:0521035465] [INSPIRE].Google Scholar
  2. [2]
    D.Z. Freedman and A. Van Proeyen, Supergravity, Cambridge University Press, Cambridge U.K. (2012) [ISBN:0521194016] [INSPIRE].zbMATHCrossRefGoogle Scholar
  3. [3]
    H. Lü, C. Pope and K. Stelle, Multiplet structures of BPS solitons, Class. Quant. Grav. 15 (1998) 537 [hep-th/9708109] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  4. [4]
    X. Bekaert, N. Boulanger and M. Henneaux, Consistent deformations of dual formulations of linearized gravity: a no go result, Phys. Rev. D 67 (2003) 044010 [hep-th/0210278] [INSPIRE].MathSciNetADSGoogle Scholar
  5. [5]
    E.A. Bergshoeff, M. de Roo, S.F. Kerstan, A. Kleinschmidt and F. Riccioni, Dual gravity and matter, Gen. Rel. Grav. 41 (2009) 39 [arXiv:0803.1963] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  6. [6]
    P.C. West, E 11 and M-theory, Class. Quant. Grav. 18 (2001) 4443 [hep-th/0104081] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  7. [7]
    P.C. West, E 11 , SL(32) and central charges, Phys. Lett. B 575 (2003) 333 [hep-th/0307098] [INSPIRE].ADSGoogle Scholar
  8. [8]
    E.A. Bergshoeff and F. Riccioni, Branes and wrapping rules, Phys. Lett. B 704 (2011) 367 [arXiv:1108.5067] [INSPIRE].MathSciNetADSGoogle Scholar
  9. [9]
    E. Bergshoeff and F. Riccioni, Branes and wrapping rules, J. Phys. Conf. Ser. 343 (2012) 012015 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    J. de Azcarraga, J.P. Gauntlett, J. Izquierdo and P. Townsend, Topological extensions of the supersymmetry algebra for extended objects, Phys. Rev. Lett. 63 (1989) 2443 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    P. Townsend, M theory from its superalgebra, in Cargese 1997, Strings, branes and dualities, France (1997), pg. 141 [hep-th/9712004] [INSPIRE].
  12. [12]
    E.A. Bergshoeff, A. Kleinschmidt and F. Riccioni, Supersymmetric domain walls, Phys. Rev. D 86 (2012) 085043 [arXiv:1206.5697] [INSPIRE].ADSGoogle Scholar
  13. [13]
    I. Schnakenburg and P.C. West, Kac-Moody symmetries of ten-dimensional nonmaximal supergravity theories, JHEP 05 (2004) 019 [hep-th/0401196] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    E.A. Bergshoeff, J. Gomis, T.A. Nutma and D. Roest, Kac-Moody spectrum of (half-)maximal supergravities, JHEP 02 (2008) 069 [arXiv:0711.2035] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    E.A. Bergshoeff and F. Riccioni, D-brane Wess-Zumino terms and U-duality, JHEP 11 (2010) 139 [arXiv:1009.4657] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    E.A. Bergshoeff and F. Riccioni, String solitons and T-duality, JHEP 05 (2011) 131 [arXiv:1102.0934] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    E.A. Bergshoeff and F. Riccioni, The D-brane U-scan, arXiv:1109.1725 [INSPIRE].
  18. [18]
    E.A. Bergshoeff, A. Marrani and F. Riccioni, Brane orbits, Nucl. Phys. B 861 (2012) 104 [arXiv:1201.5819] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    L. Houart, A. Kleinschmidt and J. Lindman Hornlund, An M-theory solution from null roots in E 11, JHEP 01 (2011) 154 [arXiv:1101.2816] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    A. Kleinschmidt, Counting supersymmetric branes, JHEP 10 (2011) 144 [arXiv:1109.2025] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    E. Bergshoeff, R. Kallosh and M. Rakhmanov, Singlets of fermionic gauge symmetries, Phys. Lett. B 223 (1989) 391 [INSPIRE].ADSGoogle Scholar
  22. [22]
    J.J. Atick, A. Dhar and B. Ratra, Superstring propagation in curved superspace in the presence of background super Yang-Mills fields, Phys. Lett. B 169 (1986) 54 [INSPIRE].MathSciNetADSGoogle Scholar
  23. [23]
    P. Townsend, A new anomaly free chiral supergravity theory from compactification on K3, Phys. Lett. B 139 (1984) 283 [INSPIRE].MathSciNetADSGoogle Scholar
  24. [24]
    A. Kleinschmidt and H. Nicolai, E 10 and SO(9, 9) invariant supergravity, JHEP 07 (2004) 041 [hep-th/0407101] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    E.A. Bergshoeff and F. Riccioni, Dual doubled geometry, Phys. Lett. B 702 (2011) 281 [arXiv:1106.0212] [INSPIRE].MathSciNetADSGoogle Scholar
  26. [26]
    E.A. Bergshoeff, T. Ortín and F. Riccioni, Defect branes, Nucl. Phys. B 856 (2012) 210 [arXiv:1109.4484] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    C. Hull and P. Townsend, Unity of superstring dualities, Nucl. Phys. B 438 (1995) 109 [hep-th/9410167] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    A. Van Proeyen, Tools for supersymmetry, lectures given at the Spring school on quantum field theory: supersymmetry and superstrings, Calimanesti Romania April 24-30 1998 [hep-th/9910030] [INSPIRE].
  29. [29]
    C. Hull, A geometry for non-geometric string backgrounds, JHEP 10 (2005) 065 [hep-th/0406102] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    C.M. Hull, Doubled geometry and T-folds, JHEP 07 (2007) 080 [hep-th/0605149] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    C. Hull and R. Reid-Edwards, Gauge symmetry, T-duality and doubled geometry, JHEP 08 (2008) 043 [arXiv:0711.4818] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    C. Hull and B. Zwiebach, Double field theory, JHEP 09 (2009) 099 [arXiv:0904.4664] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    A. Sagnotti, Open strings and their symmetry groups, in Cargese 1987, proceedings, nonperturbative quantum field theory, France (1987), pg. 521 and Rome II univ. — ROM2F-87-025, 87,Rec.Mar.88 [hep-th/0208020] [INSPIRE].
  34. [34]
    M. Henneaux, D. Persson and P. Spindel, Spacelike singularities and hidden symmetries of gravity, Living Rev. Rel. 11 (2008) 1 [arXiv:0710.1818] [INSPIRE].Google Scholar
  35. [35]
    F. Riccioni, A. Van Proeyen and P.C. West, Real forms of very extended Kac-Moody algebras and theories with eight supersymmetries, JHEP 05 (2008) 079 [arXiv:0801.2763] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    E.A. Bergshoeff, I. De Baetselier and T.A. Nutma, E 11 and the embedding tensor, JHEP 09 (2007) 047 [arXiv:0705.1304] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Centre for Theoretical PhysicsUniversity of GroningenGroningenThe Netherlands
  2. 2.INFN Sezione di Roma and Dipartimento di FisicaUniversità di Roma “La Sapienza”RomaItaly

Personalised recommendations