Journal of High Energy Physics

, 2012:146 | Cite as

Small horizons

  • Jan B. Gutowski
  • Dietmar Klemm
  • Wafic Sabra
  • Peter Sloane
Article

Abstract

All near-horizon geometries of supersymmetric black holes in a N = 2, D = 5 higher-derivative supergravity theory are classified. Depending on the choice of nearhorizon data we find that either there are no regular horizons, or horizons exist and the spatial cross-sections of the event horizons are conformal to a squashed or round S 3, S 1 × S 2, or T 3. If the conformal factor is constant then the solutions are maximally supersymmetric. If the conformal factor is not constant, we find that it satisfies a non-linear vortex equation, and the horizon may admit scalar hair.

Keywords

Black Holes in String Theory Supergravity Models 

References

  1. [1]
    H. Elvang, R. Emparan, D. Mateos and H.S. Reall, A supersymmetric black ring, Phys. Rev. Lett. 93 (2004) 211302 [hep-th/0407065] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    R. Emparan and H.S. Reall, A rotating black ring solution in five-dimensions, Phys. Rev. Lett. 88 (2002) 101101 [hep-th/0110260] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    I. Bena and N.P. Warner, One ring to rule them all. . . and in the darkness bind them?, Adv. Theor. Math. Phys. 9 (2005) 667 [hep-th/0408106] [INSPIRE].MathSciNetMATHGoogle Scholar
  4. [4]
    H. Elvang, R. Emparan, D. Mateos and H.S. Reall, Supersymmetric black rings and three-charge supertubes, Phys. Rev. D 71 (2005) 024033 [hep-th/0408120] [INSPIRE].MathSciNetADSGoogle Scholar
  5. [5]
    G.T. Horowitz and H.S. Reall, How hairy can a black ring be?, Class. Quant. Grav. 22 (2005) 1289 [hep-th/0411268] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  6. [6]
    J.P. Gauntlett and J.B. Gutowski, Concentric black rings, Phys. Rev. D 71 (2005) 025013 [hep-th/0408010] [INSPIRE].MathSciNetADSGoogle Scholar
  7. [7]
    J.P. Gauntlett and J.B. Gutowski, General concentric black rings, Phys. Rev. D 71 (2005) 045002 [hep-th/0408122] [INSPIRE].MathSciNetADSGoogle Scholar
  8. [8]
    W. Israel, Event horizons in static vacuum space-times, Phys. Rev. 164 (1967) 1776 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    B. Carter, Axisymmetric black hole has only two degrees of freedom, Phys. Rev. Lett. 26 (1971) 331 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    S. Hawking, Black holes in general relativity, Commun. Math. Phys. 25 (1972) 152 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    D. Robinson, Uniqueness of the Kerr black hole, Phys. Rev. Lett. 34 (1975) 905 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    W. Israel, Event horizons in static electrovac space-times, Commun. Math. Phys. 8 (1968) 245 [INSPIRE].
  13. [13]
    P. Mazur, Proof of uniqueness of the Kerr-Newman black hole solution, J. Phys. A 15 (1982) 3173 [INSPIRE].MathSciNetADSGoogle Scholar
  14. [14]
    G.W. Gibbons, D. Ida and T. Shiromizu, Uniqueness and nonuniqueness of static black holes in higher dimensions, Phys. Rev. Lett. 89 (2002) 041101 [hep-th/0206049] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    M. Rogatko, Uniqueness theorem of static degenerate and nondegenerate charged black holes in higher dimensions, Phys. Rev. D 67 (2003) 084025 [hep-th/0302091] [INSPIRE].MathSciNetADSGoogle Scholar
  16. [16]
    M. Rogatko, Classification of static charged black holes in higher dimensions, Phys. Rev. D 73 (2006) 124027 [hep-th/0606116] [INSPIRE].MathSciNetADSGoogle Scholar
  17. [17]
    P. Figueras and J. Lucietti, On the uniqueness of extremal vacuum black holes, Class. Quant. Grav. 27 (2010) 095001 [arXiv:0906.5565] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    S. Tomizawa, Y. Yasui and A. Ishibashi, Uniqueness theorem for charged rotating black holes in five-dimensional minimal supergravity, Phys. Rev. D 79 (2009) 124023 [arXiv:0901.4724] [INSPIRE].MathSciNetADSGoogle Scholar
  19. [19]
    S. Hollands and S. Yazadjiev, A uniqueness theorem for 5-dimensional Einstein-Maxwell black holes, Class. Quant. Grav. 25 (2008) 095010 [arXiv:0711.1722] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    H.S. Reall, Higher dimensional black holes and supersymmetry, Phys. Rev. D 68 (2003) 024024 [Erratum ibid. D 70 (2004) 089902] [hep-th/0211290] [INSPIRE].MathSciNetADSGoogle Scholar
  21. [21]
    J.B. Gutowski, Uniqueness of five-dimensional supersymmetric black holes, JHEP 08 (2004) 049 [hep-th/0404079] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    J.B. Gutowski and H.S. Reall, Supersymmetric AdS 5 black holes, JHEP 02 (2004) 006 [hep-th/0401042] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    Z. Chong, M. Cvetič, H. Lü and C. Pope, Five-dimensional gauged supergravity black holes with independent rotation parameters, Phys. Rev. D 72 (2005) 041901 [hep-th/0505112] [INSPIRE].ADSGoogle Scholar
  24. [24]
    H.K. Kunduri, J. Lucietti and H.S. Reall, Do supersymmetric Anti-de Sitter black rings exist?, JHEP 02 (2007) 026 [hep-th/0611351] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    J. Gutowski and G. Papadopoulos, Heterotic black horizons, JHEP 07 (2010) 011 [arXiv:0912.3472] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    J. Gutowski and W. Sabra, Towards cosmological black rings, JHEP 05 (2011) 020 [arXiv:1012.2120] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    K. Hanaki, K. Ohashi and Y. Tachikawa, Supersymmetric completion of an R 2 term in five-dimensional supergravity, Prog. Theor. Phys. 117 (2007) 533 [hep-th/0611329] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  28. [28]
    B. de Wit and S. Katmadas, Near-horizon analysis of D = 5 BPS black holes and rings, JHEP 02 (2010) 056 [arXiv:0910.4907] [INSPIRE].CrossRefGoogle Scholar
  29. [29]
    J. Isenberg and V. Moncrief, Symmetries of cosmological Cauchy horizons, Commun. Math. Phys. 89 (1983) 387.MathSciNetADSMATHCrossRefGoogle Scholar
  30. [30]
    H. Friedrich, I. Racz and R.M. Wald, On the rigidity theorem for space-times with a stationary event horizon or a compact Cauchy horizon, Commun. Math. Phys. 204 (1999) 691 [gr-qc/9811021] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  31. [31]
    S. Hollands and A. Ishibashi, On the ‘stationary implies axisymmetric’ theorem for extremal black holes in higher dimensions, Commun. Math. Phys. 291 (2009) 403 [arXiv:0809.2659] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    A. Castro, J.L. Davis, P. Kraus and F. Larsen, String theory effects on five-dimensional black hole physics, Int. J. Mod. Phys. A 23 (2008) 613 [arXiv:0801.1863] [INSPIRE].MathSciNetADSGoogle Scholar
  33. [33]
    J.P. Gauntlett, J.B. Gutowski, C.M. Hull, S. Pakis and H.S. Reall, All supersymmetric solutions of minimal supergravity in five- dimensions, Class. Quant. Grav. 20 (2003) 4587 [hep-th/0209114] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  34. [34]
    I. Bena, G. DallAgata, S. Giusto, C. Ruef and N.P. Warner, Non-BPS black rings and black holes in Taub-NUT, JHEP 06 (2009) 015 [arXiv:0902.4526] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    K. Goldstein and S. Katmadas, Almost BPS black holes, JHEP 05 (2009) 058 [arXiv:0812.4183] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    K.P. Tod, Compact 3-dimensional Einstein-Weyl structures, J. London Math. Soc. 45 (1992) 41.MathSciNetCrossRefGoogle Scholar
  37. [37]
    P. Gauduchon, La 1-forme de torsion d’une variété hermitienne compacte, Math. Ann. 267 (1984)495.MathSciNetMATHCrossRefGoogle Scholar
  38. [38]
    F. Bonetti, J.B. Gutowski, D. Klemm, W.A. Sabra and P. Sloane, All supersymmetric solutions of N = 2, D = 5 supergravity with R 2 corrections, in preparation. Google Scholar
  39. [39]
    J. Breckenridge, R.C. Myers, A. Peet and C. Vafa, D-branes and spinning black holes, Phys. Lett. B 391 (1997) 93 [hep-th/9602065] [INSPIRE].MathSciNetADSGoogle Scholar
  40. [40]
    C.H. Taubes, Arbitrary N: vortex solutions to the first order Landau-Ginzburg equations, Commun. Math. Phys. 72 (1980) 277 [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  41. [41]
    J.L. Kazdan and F.W. Warner, Curvature functions for compact 2-manifolds, Ann. Math. Second Ser. 99 (1974) 14.MathSciNetMATHCrossRefGoogle Scholar
  42. [42]
    S. Bradlow, Vortices in holomorphic line bundles over closed Kähler manifolds, Commun. Math. Phys. 135 (1990) 1 [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  43. [43]
    N.S. Manton and P. Sutcliffe, Topological solitons, Cambridge University Press, Cambridge U.K. (2004).Google Scholar
  44. [44]
    H.K. Kunduri, J. Lucietti and H.S. Reall, Near-horizon symmetries of extremal black holes, Class. Quant. Grav. 24 (2007) 4169 [arXiv:0705.4214] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  45. [45]
    U. Gran, J. Gutowski and G. Papadopoulos, The spinorial geometry of supersymmetric IIB backgrounds, Class. Quant. Grav. 22 (2005) 2453 [hep-th/0501177] [INSPIRE].MathSciNetMATHCrossRefGoogle Scholar
  46. [46]
    J. Gillard, U. Gran and G. Papadopoulos, The spinorial geometry of supersymmetric backgrounds, Class. Quant. Grav. 22 (2005) 1033 [hep-th/0410155] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Jan B. Gutowski
    • 1
  • Dietmar Klemm
    • 2
    • 3
  • Wafic Sabra
    • 4
  • Peter Sloane
    • 3
  1. 1.Department of MathematicsKing’s College LondonLondonU.K
  2. 2.Dipartimento di FisicaUniversità di MilanoMilanoItaly
  3. 3.INFN — Sezione di MilanoMilanoItaly
  4. 4.Centre for Advanced Mathematical Sciences and Physics DepartmentAmerican University of BeirutBeirutLebanon

Personalised recommendations