Skip to main content
Log in

Fluctuations of conserved charges at finite temperature from lattice QCD

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We present the full results of the Wuppertal-Budapest lattice QCD collaboration on flavor diagonal and non-diagonal quark number susceptibilities with 2 + 1 staggered quark flavors, in a temperature range between 125 and 400 MeV. The light and strange quark masses are set to their physical values. Lattices with N t  = 6, 8, 10, 12, 16 are used. We perform a continuum extrapolation of all observables under study. A Symanzik improved gauge and a stout-link improved staggered fermion action is utilized. All results are compared to the Hadron Resonance Gas model predictions: good agreement is found in the temperature region below the transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Y. Aoki, G. Endrodi, Z. Fodor, S. Katz and K. Szabo, The order of the quantum chromodynamics transition predicted by the standard model of particle physics, Nature 443 (2006) 675 [hep-lat/0611014] [INSPIRE].

    Article  ADS  Google Scholar 

  2. A. Bazavov et al., The chiral and deconfinement aspects of the QCD transition, arXiv:1111.1710 [INSPIRE].

  3. S. Jeon and V. Koch, Charged particle ratio fluctuation as a signal for QGP, Phys. Rev. Lett. 85 (2000) 2076 [hep-ph/0003168] [INSPIRE].

    Article  ADS  Google Scholar 

  4. M. Asakawa, U.W. Heinz and B. Müller, Fluctuation probes of quark deconfinement, Phys. Rev. Lett. 85 (2000) 2072 [hep-ph/0003169] [INSPIRE].

    Article  ADS  Google Scholar 

  5. S.A. Gottlieb, W. Liu, D. Toussaint, R. Renken and R. Sugar, The quark number susceptibility of high temperature QCD, Phys. Rev. Lett. 59 (1987) 2247 [INSPIRE].

    Article  ADS  Google Scholar 

  6. S.A. Gottlieb, W. Liu, D. Toussaint, R. Renken and R. Sugar, Fermion number susceptibility in lattice gauge theory, Phys. Rev. D 38 (1988) 2888.

    ADS  Google Scholar 

  7. R. Gavai, J. Potvin and S. Sanielevici, Quark number susceptibility in quenched quantum chromodynamics, Phys. Rev. D 40 (1989) 2743 [INSPIRE].

    ADS  Google Scholar 

  8. L.D. McLerran, A chiral symmetry order parameter, the lattice and nucleosynthesis, Phys. Rev. D 36 (1987) 3291 [INSPIRE].

    ADS  Google Scholar 

  9. R. Dashen, S.-K. Ma and H.J. Bernstein, S matrix formulation of statistical mechanics, Phys. Rev. 187 (1969) 345 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  10. R. Venugopalan and M. Prakash, Thermal properties of interacting hadrons, Nucl. Phys. A 546 (1992) 718 [INSPIRE].

    ADS  Google Scholar 

  11. F. Karsch, K. Redlich and A. Tawfik, Hadron resonance mass spectrum and lattice QCD thermodynamics, Eur. Phys. J. C 29 (2003) 549 [hep-ph/0303108] [INSPIRE].

    Article  ADS  Google Scholar 

  12. F. Karsch, K. Redlich and A. Tawfik, Thermodynamics at nonzero baryon number density: a comparison of lattice and hadron resonance gas model calculations, Phys. Lett. B 571 (2003) 67 [hep-ph/0306208] [INSPIRE].

    ADS  Google Scholar 

  13. A. Tawfik, QCD phase diagram: a comparison of lattice and hadron resonance gas model calculations, Phys. Rev. D 71 (2005) 054502 [hep-ph/0412336] [INSPIRE].

    ADS  Google Scholar 

  14. J. Blaizot, E. Iancu and A. Rebhan, Quark number susceptibilities from HTL resummed thermodynamics, Phys. Lett. B 523 (2001) 143 [hep-ph/0110369] [INSPIRE].

    ADS  Google Scholar 

  15. C. Ratti, R. Bellwied, M. Cristoforetti and M. Barbaro, Are there hadronic bound states above the QCD transition temperature?, arXiv:1109.6243 [INSPIRE].

  16. V. Koch, A. Majumder and J. Randrup, Baryon-strangeness correlations: a diagnostic of strongly interacting matter, Phys. Rev. Lett. 95 (2005) 182301 [nucl-th/0505052] [INSPIRE].

    Article  ADS  Google Scholar 

  17. R.V. Gavai, S. Gupta and P. Majumdar, Susceptibilities and screening masses in two flavor QCD, Phys. Rev. D 65 (2002) 054506 [hep-lat/0110032] [INSPIRE].

    ADS  Google Scholar 

  18. C. Allton et al., The QCD thermal phase transition in the presence of a small chemical potential, Phys. Rev. D 66 (2002) 074507 [hep-lat/0204010] [INSPIRE].

    ADS  Google Scholar 

  19. C. Allton et al., The equation of state for two flavor QCD at nonzero chemical potential, Phys. Rev. D 68 (2003) 014507 [hep-lat/0305007] [INSPIRE].

    ADS  Google Scholar 

  20. C. Allton, et al., Thermodynamics of two flavor QCD to sixth order in quark chemical potential, Phys. Rev. D 71 (2005) 054508 [hep-lat/0501030] [INSPIRE].

    ADS  Google Scholar 

  21. R. Gavai and S. Gupta, Simple patterns for non-linear susceptibilities near T c, Phys. Rev. D 72 (2005) 054006 [hep-lat/0507023] [INSPIRE].

    ADS  Google Scholar 

  22. S. Ejiri, F. Karsch and K. Redlich, Hadronic fluctuations at the QCD phase transition, Phys. Lett. B 633 (2006) 275 [hep-ph/0509051] [INSPIRE].

    ADS  Google Scholar 

  23. R. Gavai and S. Gupta, Fluctuations, strangeness and quasi-quarks in heavy-ion collisions from lattice QCD, Phys. Rev. D 73 (2006) 014004 [hep-lat/0510044] [INSPIRE].

    ADS  Google Scholar 

  24. M. Cheng et al., Baryon number, strangeness and electric charge fluctuations in QCD at high temperature, Phys. Rev. D 79 (2009) 074505 [arXiv:0811.1006] [INSPIRE].

    ADS  Google Scholar 

  25. A. Bazavov et al., Equation of state and QCD transition at finite temperature, Phys. Rev. D 80 (2009) 014504 [arXiv:0903.4379] [INSPIRE].

    ADS  Google Scholar 

  26. Wuppertal-Budapest collaboration, S. Borsányi et al., Is there still any T c mystery in lattice QCD? Results with physical masses in the continuum limit III, JHEP 09 (2010) 073 [arXiv:1005.3508] [INSPIRE].

    Article  ADS  Google Scholar 

  27. Y. Aoki, Z. Fodor, S. Katz and K. Szabo, The QCD transition temperature: results with physical masses in the continuum limit, Phys. Lett. B 643 (2006) 46 [hep-lat/0609068] [INSPIRE].

    ADS  Google Scholar 

  28. Y. Aoki et al., The QCD transition temperature: results with physical masses in the continuum limit II, JHEP 06 (2009) 088 [arXiv:0903.4155] [INSPIRE].

    Article  ADS  Google Scholar 

  29. Y. Aoki, Z. Fodor, S. Katz and K. Szabo, The equation of state in lattice QCD: with physical quark masses towards the continuum limit, JHEP 01 (2006) 089 [hep-lat/0510084] [INSPIRE].

    Article  ADS  Google Scholar 

  30. C. Morningstar and M.J. Peardon, Analytic smearing of SU(3) link variables in lattice QCD, Phys. Rev. D 69 (2004) 054501 [hep-lat/0311018] [INSPIRE].

    ADS  Google Scholar 

  31. HPQCD and UKQCD collaboration, E. Follana et al., Highly improved staggered quarks on the lattice, with applications to charm physics, Phys. Rev. D 75 (2007) 054502 [hep-lat/0610092] [INSPIRE].

    ADS  Google Scholar 

  32. Z. Fodor and S. Katz, The phase diagram of quantum chromodynamics, arXiv:0908.3341 [INSPIRE].

  33. S. Borsányi et al., The QCD equation of state with dynamical quarks, JHEP 11 (2010) 077 [arXiv:1007.2580] [INSPIRE].

    Article  ADS  Google Scholar 

  34. S. Dürr et al., Ab-Initio determination of light hadron masses, Science 322 (2008) 1224 [arXiv:0906.3599] [INSPIRE].

    Article  ADS  Google Scholar 

  35. S. Dürr et al., Lattice QCD at the physical point: simulation and analysis details, JHEP 08 (2011) 148 [arXiv:1011.2711] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Szabolcs Borsányi.

Additional information

ArXiv ePrint: 1112.4416

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borsányi, S., Fodor, Z., Katz, S.D. et al. Fluctuations of conserved charges at finite temperature from lattice QCD. J. High Energ. Phys. 2012, 138 (2012). https://doi.org/10.1007/JHEP01(2012)138

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2012)138

Keywords

Navigation