Advertisement

Journal of High Energy Physics

, 2012:138 | Cite as

Fluctuations of conserved charges at finite temperature from lattice QCD

  • Szabolcs BorsányiEmail author
  • Zoltán Fodor
  • Sándor D. Katz
  • Stefan Krieg
  • Claudia Ratti
  • Kálman Szabó
Article

Abstract

We present the full results of the Wuppertal-Budapest lattice QCD collaboration on flavor diagonal and non-diagonal quark number susceptibilities with 2 + 1 staggered quark flavors, in a temperature range between 125 and 400 MeV. The light and strange quark masses are set to their physical values. Lattices with N t  = 6, 8, 10, 12, 16 are used. We perform a continuum extrapolation of all observables under study. A Symanzik improved gauge and a stout-link improved staggered fermion action is utilized. All results are compared to the Hadron Resonance Gas model predictions: good agreement is found in the temperature region below the transition.

Keywords

Lattice QCD Global Symmetries 

References

  1. [1]
    Y. Aoki, G. Endrodi, Z. Fodor, S. Katz and K. Szabo, The order of the quantum chromodynamics transition predicted by the standard model of particle physics, Nature 443 (2006) 675 [hep-lat/0611014] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    A. Bazavov et al., The chiral and deconfinement aspects of the QCD transition, arXiv:1111.1710 [INSPIRE].
  3. [3]
    S. Jeon and V. Koch, Charged particle ratio fluctuation as a signal for QGP, Phys. Rev. Lett. 85 (2000) 2076 [hep-ph/0003168] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    M. Asakawa, U.W. Heinz and B. Müller, Fluctuation probes of quark deconfinement, Phys. Rev. Lett. 85 (2000) 2072 [hep-ph/0003169] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    S.A. Gottlieb, W. Liu, D. Toussaint, R. Renken and R. Sugar, The quark number susceptibility of high temperature QCD, Phys. Rev. Lett. 59 (1987) 2247 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    S.A. Gottlieb, W. Liu, D. Toussaint, R. Renken and R. Sugar, Fermion number susceptibility in lattice gauge theory, Phys. Rev. D 38 (1988) 2888.ADSGoogle Scholar
  7. [7]
    R. Gavai, J. Potvin and S. Sanielevici, Quark number susceptibility in quenched quantum chromodynamics, Phys. Rev. D 40 (1989) 2743 [INSPIRE].ADSGoogle Scholar
  8. [8]
    L.D. McLerran, A chiral symmetry order parameter, the lattice and nucleosynthesis, Phys. Rev. D 36 (1987) 3291 [INSPIRE].ADSGoogle Scholar
  9. [9]
    R. Dashen, S.-K. Ma and H.J. Bernstein, S matrix formulation of statistical mechanics, Phys. Rev. 187 (1969) 345 [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  10. [10]
    R. Venugopalan and M. Prakash, Thermal properties of interacting hadrons, Nucl. Phys. A 546 (1992) 718 [INSPIRE].ADSGoogle Scholar
  11. [11]
    F. Karsch, K. Redlich and A. Tawfik, Hadron resonance mass spectrum and lattice QCD thermodynamics, Eur. Phys. J. C 29 (2003) 549 [hep-ph/0303108] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    F. Karsch, K. Redlich and A. Tawfik, Thermodynamics at nonzero baryon number density: a comparison of lattice and hadron resonance gas model calculations, Phys. Lett. B 571 (2003) 67 [hep-ph/0306208] [INSPIRE].ADSGoogle Scholar
  13. [13]
    A. Tawfik, QCD phase diagram: a comparison of lattice and hadron resonance gas model calculations, Phys. Rev. D 71 (2005) 054502 [hep-ph/0412336] [INSPIRE].ADSGoogle Scholar
  14. [14]
    J. Blaizot, E. Iancu and A. Rebhan, Quark number susceptibilities from HTL resummed thermodynamics, Phys. Lett. B 523 (2001) 143 [hep-ph/0110369] [INSPIRE].ADSGoogle Scholar
  15. [15]
    C. Ratti, R. Bellwied, M. Cristoforetti and M. Barbaro, Are there hadronic bound states above the QCD transition temperature?, arXiv:1109.6243 [INSPIRE].
  16. [16]
    V. Koch, A. Majumder and J. Randrup, Baryon-strangeness correlations: a diagnostic of strongly interacting matter, Phys. Rev. Lett. 95 (2005) 182301 [nucl-th/0505052] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    R.V. Gavai, S. Gupta and P. Majumdar, Susceptibilities and screening masses in two flavor QCD, Phys. Rev. D 65 (2002) 054506 [hep-lat/0110032] [INSPIRE].ADSGoogle Scholar
  18. [18]
    C. Allton et al., The QCD thermal phase transition in the presence of a small chemical potential, Phys. Rev. D 66 (2002) 074507 [hep-lat/0204010] [INSPIRE].ADSGoogle Scholar
  19. [19]
    C. Allton et al., The equation of state for two flavor QCD at nonzero chemical potential, Phys. Rev. D 68 (2003) 014507 [hep-lat/0305007] [INSPIRE].ADSGoogle Scholar
  20. [20]
    C. Allton, et al., Thermodynamics of two flavor QCD to sixth order in quark chemical potential, Phys. Rev. D 71 (2005) 054508 [hep-lat/0501030] [INSPIRE].ADSGoogle Scholar
  21. [21]
    R. Gavai and S. Gupta, Simple patterns for non-linear susceptibilities near T c, Phys. Rev. D 72 (2005) 054006 [hep-lat/0507023] [INSPIRE].ADSGoogle Scholar
  22. [22]
    S. Ejiri, F. Karsch and K. Redlich, Hadronic fluctuations at the QCD phase transition, Phys. Lett. B 633 (2006) 275 [hep-ph/0509051] [INSPIRE].ADSGoogle Scholar
  23. [23]
    R. Gavai and S. Gupta, Fluctuations, strangeness and quasi-quarks in heavy-ion collisions from lattice QCD, Phys. Rev. D 73 (2006) 014004 [hep-lat/0510044] [INSPIRE].ADSGoogle Scholar
  24. [24]
    M. Cheng et al., Baryon number, strangeness and electric charge fluctuations in QCD at high temperature, Phys. Rev. D 79 (2009) 074505 [arXiv:0811.1006] [INSPIRE].ADSGoogle Scholar
  25. [25]
    A. Bazavov et al., Equation of state and QCD transition at finite temperature, Phys. Rev. D 80 (2009) 014504 [arXiv:0903.4379] [INSPIRE].ADSGoogle Scholar
  26. [26]
    Wuppertal-Budapest collaboration, S. Borsányi et al., Is there still any T c mystery in lattice QCD? Results with physical masses in the continuum limit III, JHEP 09 (2010) 073 [arXiv:1005.3508] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    Y. Aoki, Z. Fodor, S. Katz and K. Szabo, The QCD transition temperature: results with physical masses in the continuum limit, Phys. Lett. B 643 (2006) 46 [hep-lat/0609068] [INSPIRE].ADSGoogle Scholar
  28. [28]
    Y. Aoki et al., The QCD transition temperature: results with physical masses in the continuum limit II, JHEP 06 (2009) 088 [arXiv:0903.4155] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    Y. Aoki, Z. Fodor, S. Katz and K. Szabo, The equation of state in lattice QCD: with physical quark masses towards the continuum limit, JHEP 01 (2006) 089 [hep-lat/0510084] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    C. Morningstar and M.J. Peardon, Analytic smearing of SU(3) link variables in lattice QCD, Phys. Rev. D 69 (2004) 054501 [hep-lat/0311018] [INSPIRE].ADSGoogle Scholar
  31. [31]
    HPQCD and UKQCD collaboration, E. Follana et al., Highly improved staggered quarks on the lattice, with applications to charm physics, Phys. Rev. D 75 (2007) 054502 [hep-lat/0610092] [INSPIRE].ADSGoogle Scholar
  32. [32]
    Z. Fodor and S. Katz, The phase diagram of quantum chromodynamics, arXiv:0908.3341 [INSPIRE].
  33. [33]
    S. Borsányi et al., The QCD equation of state with dynamical quarks, JHEP 11 (2010) 077 [arXiv:1007.2580] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    S. Dürr et al., Ab-Initio determination of light hadron masses, Science 322 (2008) 1224 [arXiv:0906.3599] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    S. Dürr et al., Lattice QCD at the physical point: simulation and analysis details, JHEP 08 (2011) 148 [arXiv:1011.2711] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Szabolcs Borsányi
    • 1
    Email author
  • Zoltán Fodor
    • 1
    • 2
    • 3
  • Sándor D. Katz
    • 2
  • Stefan Krieg
    • 1
    • 3
  • Claudia Ratti
    • 4
  • Kálman Szabó
    • 1
  1. 1.Dept. of PhysicsWuppertal UniversityWuppertalGermany
  2. 2.Inst. for Theoretical PhysicsEötvös UniversityBudapestHungary
  3. 3.Jülich Supercomputing CentreJülichGermany
  4. 4.Dip. di Fisica TeoricaUniversità di Torino and INFN — Sezione di TorinoTorinoItaly

Personalised recommendations