Journal of High Energy Physics

, 2012:136 | Cite as

Non-standard neutrino propagation and pion decay

  • Massimo Mannarelli
  • Manimala Mitra
  • Francesco L. Villante
  • Francesco Vissani
Article

Abstract

Motivated by the findings of the OPERA experiment, we discuss the hypothesis that neutrino propagation does not obey Einstein special relativity. Under a minimal set of modifications of the standard model Lagrangian, we consider the implications of non standard neutrino propagation on the description of neutrino interactions and, specifically, on the pion decay processes. We show that all the different dispersion relations which have been proposed so far to explain OPERA results, imply huge departures from the standard expectations. The decay channel π+ → e+νe becomes significantly larger than in the standard scenario, and may even dominate over π+ → μ+νμ. Moreover, the spectral distribution of neutrinos produced in the decay processes and the probability that a pion decays in flight in neutrinos show large deviations from the standard results.

Keywords

Neutrino Physics Standard Model 

References

  1. [1]
    OPERA collaboration, T. Adam et al., Measurement of the neutrino velocity with the OPERA detector in the CNGS beam, arXiv:1109.4897 [INSPIRE].
  2. [2]
    MINOS collaboration, P. Adamson et al., Measurement of neutrino velocity with the MINOS detectors and NuMI neutrino beam, Phys. Rev. D 76 (2007) 072005 [arXiv:0706.0437] [INSPIRE].ADSGoogle Scholar
  3. [3]
    M.J. Longo, Tests of relativity from SN1987A, Phys. Rev. D 36 (1987) 3276 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    IMB collaboration, R.M. Bionta et al., Observation of a neutrino burst in coincidence with supernova SN 1987A in the Large Magellanic Cloud, Phys. Rev. Lett. 58 (1987) 1494ADSCrossRefGoogle Scholar
  5. [5]
    KAMIOKANDE-II collaboration, K. Hirata et al., Observation of a Neutrino Burst from the Supernova SN 1987a, Phys. Rev. Lett. 58 (1987) 1490 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    J.R. Ellis, N. Harries, A. Meregaglia, A. Rubbia and A. Sakharov, Probes of Lorentz violation in neutrino propagation, Phys. Rev. D 78 (2008) 033013 [arXiv:0805.0253] [INSPIRE].ADSGoogle Scholar
  7. [7]
    G. Cacciapaglia, A. Deandrea and L. Panizzi, Superluminal neutrinos in long baseline experiments and SN1987a, JHEP 11 (2011) 137 [arXiv:1109.4980] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    G.F. Giudice, S. Sibiryakov and A. Strumia, Interpreting OPERA results on superluminal neutrino, arXiv:1109.5682 [INSPIRE].
  9. [9]
    A.G. Cohen and S.L. Glashow, Pair creation constrains superluminal neutrino propagation, Phys. Rev. Lett. 107 (2011) 181803 [arXiv:1109.6562] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    X.-J. Bi, P.-F. Yin, Z.-H. Yu and Q. Yuan, Constraints and tests of the OPERA superluminal neutrinos, Phys. Rev. Lett. 107 (2011) 241802 [arXiv:1109.6667] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    F. Villante and F. Vissani, On the generality of the Cohen and Glashow constraints on the neutrino velocity, arXiv:1110.4591 [INSPIRE].
  12. [12]
    M. Li, D. Liu, J. Meng, T. Wang and L. Zhou, Replaying neutrino bremsstrahlung with general dispersion relations, arXiv:1111.3294 [INSPIRE].
  13. [13]
    L. Gonzalez-Mestres, Astrophysical consequences of the OPERA superluminal neutrino, arXiv:1109.6630 [INSPIRE].
  14. [14]
    R. Cowsik, S. Nussinov and U. Sarkar, Superluminal neutrinos at OPERA confront pion decay kinematics, Phys. Rev. Lett. 107 (2011) 251801 [arXiv:1110.0241] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    B. Altschul, Consequences of neutrino Lorentz violation for leptonic meson decays, Phys. Rev. D 84 (2011) 091902 [arXiv:1110.2123] [INSPIRE].ADSGoogle Scholar
  16. [16]
    S.R. Coleman and S.L. Glashow, High-energy tests of Lorentz invariance, Phys. Rev. D 59 (1999)116008 [hep-ph/9812418] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    W.D. Arnett, On the early behavior of supernova 1987A, Astrophys. J. 331 (1988) 377ADSCrossRefGoogle Scholar
  18. [18]
  19. [19]
    F. Vissani, The beta spectrum in presence of background potentials for neutrinos, Phys. Lett. B 413 (1997) 101 [hep-ph/9707343] [INSPIRE].ADSGoogle Scholar
  20. [20]
    C. Kraus et al., Final results from phase II of the Mainz neutrino mass search in tritium beta decay, Eur. Phys. J. C 40 (2005) 447 [hep-ex/0412056] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    V. Lobashev, V. Aseev, A. Belesev, A. Berlev, E. Geraskin, et al., Direct search for mass of neutrino and anomaly in the tritium beta spectrum, Phys. Lett. B 460 (1999) 227 [INSPIRE].ADSGoogle Scholar
  22. [22]
    T.J. Loredo and D.Q. Lamb, Bayesian analysis of neutrinos observed from supernova SN 1987A, Phys. Rev. D 65 (2002) 063002 [astro-ph/0107260] [INSPIRE].ADSGoogle Scholar
  23. [23]
    G. Pagliaroli, F. Rossi-Torres and F. Vissani, Neutrino mass bound in the standard scenario for supernova electronic antineutrino emission, Astropart. Phys. 33 (2010) 287 [arXiv:1002.3349] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    H.B. Nielsen and I. Picek, Redei like model and testing Lorentz invariance, Phys. Lett. B 114 (1982)141 [INSPIRE].ADSGoogle Scholar
  25. [25]
    H.B. Nielsen and I. Picek, Lorentz noninvariance, Nucl. Phys. B 211 (1983) 269 [Addendum ibid. B 242 (1984) 542] [INSPIRE]].ADSCrossRefGoogle Scholar
  26. [26]
    D. Bryman et al., Measurement of the πeν branching ratio, Phys. Rev. D 33 (1986) 1211 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    D. Britton et al., Measurement of the π + → e + ν branching ratio, Phys. Rev. Lett. 68 (1992) 3000 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    G. Czapek et al., Branching ratio for the rare pion decay into positron and neutrino, Phys. Rev. Lett. 70 (1993) 17 [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    A.J. Greenberget al., Charged pion lifetime and a limit on a fundamental length, Phys. Rev. Lett. 23 (1969) 1267 [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Massimo Mannarelli
    • 1
  • Manimala Mitra
    • 1
  • Francesco L. Villante
    • 1
    • 2
  • Francesco Vissani
    • 1
  1. 1.INFN — Laboratori Nazionali del Gran SassoAssergi (AQ)L’AquilaItaly
  2. 2.Dipartimento di FisicaUniversità dell’AquilaL’AquilaItaly

Personalised recommendations