Advertisement

Journal of High Energy Physics

, 2012:121 | Cite as

Young diagrams, Brauer algebras, and bubbling geometries

  • Yusuke Kimura
  • Hai LinEmail author
Article

Abstract

We study the 1/4 BPS geometries corresponding to the 1/4 BPS operators of the dual gauge theory side, in \( \mathcal{N} = {4} \) SYM. By analyzing asymptotic structure and flux integration of the geometries, we present a mapping between droplet configurations arising from the geometries and Young diagrams of the Brauer algebra. In particular, the integer k classifying the operators in the Brauer basis is mapped to the mixing between the two angular directions.

Keywords

Gauge-gravity correspondence AdS-CFT Correspondence 

References

  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1133] [hep-th/9711200] [INSPIRE].
  2. [2]
    S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].MathSciNetADSGoogle Scholar
  3. [3]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].MathSciNetADSzbMATHGoogle Scholar
  4. [4]
    S. Corley, A. Jevicki and S. Ramgoolam, Exact correlators of giant gravitons from dual N = 4 SYM theory, Adv. Theor. Math. Phys. 5 (2002) 809 [hep-th/0111222] [INSPIRE].MathSciNetGoogle Scholar
  5. [5]
    D. Berenstein, A toy model for the AdS/CFT correspondence, JHEP 07 (2004) 018 [hep-th/0403110] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP 10 (2004) 025 [hep-th/0409174] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    D. Berenstein, Large-N BPS states and emergent quantum gravity, JHEP 01 (2006) 125 [hep-th/0507203] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    V. Balasubramanian, J. de Boer, V. Jejjala and J. Simon, The library of Babel: on the origin of gravitational thermodynamics, JHEP 12 (2005) 006 [hep-th/0508023] [INSPIRE].ADSGoogle Scholar
  9. [9]
    A. Donos, A description of 1/4 BPS configurations in minimal type IIB SUGRA, Phys. Rev. D 75 (2007) 025010 [hep-th/0606199] [INSPIRE].MathSciNetADSGoogle Scholar
  10. [10]
    B. Chen et al., Bubbling AdS and droplet descriptions of BPS geometries in IIB supergravity, JHEP 10 (2007) 003 [arXiv:0704.2233] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    O. Lunin, Brane webs and 1/4-BPS geometries, JHEP 09 (2008) 028 [arXiv:0802.0735] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    E. Gava, G. Milanesi, K. Narain and M. O’Loughlin, 1/8 BPS states in AdS/CFT, JHEP 05 (2007) 030 [hep-th/0611065] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    J.P. Gauntlett, N. Kim and D. Waldram, Supersymmetric AdS 3 , AdS 2 and bubble solutions, JHEP 04 (2007) 005 [hep-th/0612253] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    Z.-W. Chong, H. Lü and C. Pope, BPS geometries and AdS bubbles, Phys. Lett. B 614 (2005) 96 [hep-th/0412221] [INSPIRE].ADSGoogle Scholar
  15. [15]
    N. Kim, AdS 3 solutions of IIB supergravity from D3-branes, JHEP 01 (2006) 094 [hep-th/0511029] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    H. Lin, Studies on 1/4 BPS and 1/8 BPS geometries, arXiv:1008.5307 [INSPIRE].
  17. [17]
    Y. Kimura and S. Ramgoolam, Branes, anti-branes and brauer algebras in gauge-gravity duality, JHEP 11 (2007) 078 [arXiv:0709.2158] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    T.W. Brown, P. Heslop and S. Ramgoolam, Diagonal multi-matrix correlators and BPS operators in N = 4 SYM, JHEP 02 (2008) 030 [arXiv:0711.0176] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    R. Bhattacharyya, S. Collins and R. de Mello Koch, Exact multi-matrix correlators, JHEP 03 (2008) 044 [arXiv:0801.2061] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    H. Lin and J.P. Shock, unpublished.Google Scholar
  21. [21]
    L. Grant, L. Maoz, J. Marsano, K. Papadodimas and V.S. Rychkov, Minisuperspace quantization ofBubbling AdSand free fermion droplets, JHEP 08 (2005) 025 [hep-th/0505079] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    G. Mandal, Fermions from half-BPS supergravity, JHEP 08 (2005) 052 [hep-th/0502104] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    Y. Takayama and A. Tsuchiya, Complex matrix model and fermion phase space for bubbling AdS geometries, JHEP 10 (2005) 004 [hep-th/0507070] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    M.M. Caldarelli, D. Klemm and P.J. Silva, Chronology protection in anti-de Sitter, Class. Quant. Grav. 22 (2005) 3461 [hep-th/0411203] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  25. [25]
    P. Hořava and P.G. Shepard, Topology changing transitions in bubbling geometries, JHEP 02 (2005) 063 [hep-th/0502127] [INSPIRE].ADSGoogle Scholar
  26. [26]
    R. Bhattacharyya, R. de Mello Koch and M. Stephanou, Exact Multi-Restricted Schur Polynomial Correlators, JHEP 06 (2008) 101 [arXiv:0805.3025] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    T.W. Brown, P. Heslop and S. Ramgoolam, Diagonal free field matrix correlators, global symmetries and giant gravitons, JHEP 04 (2009) 089 [arXiv:0806.1911] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    Y. Kimura and S. Ramgoolam, Enhanced symmetries of gauge theory and resolving the spectrum of local operators, Phys. Rev. D 78 (2008) 126003 [arXiv:0807.3696] [INSPIRE].MathSciNetADSGoogle Scholar
  29. [29]
    Y. Kimura, Quarter BPS classified by Brauer algebra, JHEP 05 (2010) 103 [arXiv:1002.2424] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    R. de Mello Koch, N. Ives and M. Stephanou, Correlators in nontrivial backgrounds, Phys. Rev. D 79 (2009) 026004 [arXiv:0810.4041] [INSPIRE].ADSGoogle Scholar
  31. [31]
    K. Behrndt, A.H. Chamseddine and W. Sabra, BPS black holes in N = 2 five-dimensional AdS supergravity, Phys. Lett. B 442 (1998) 97 [hep-th/9807187] [INSPIRE].MathSciNetADSGoogle Scholar
  32. [32]
    K. Behrndt, M. Cvetič and W. Sabra, Nonextreme black holes of five-dimensional N = 2 AdS supergravity, Nucl. Phys. B 553 (1999) 317 [hep-th/9810227] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    R.C. Myers and O. Tafjord, Superstars and giant gravitons, JHEP 11 (2001) 009 [hep-th/0109127] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    H.-Y. Chen, D.H. Correa and G.A. Silva, Geometry and topology of bubble solutions from gauge theory, Phys. Rev. D 76 (2007) 026003 [hep-th/0703068] [INSPIRE].MathSciNetADSGoogle Scholar
  35. [35]
    R. de Mello Koch, Geometries from Young diagrams, JHEP 11 (2008) 061 [arXiv:0806.0685] [INSPIRE].CrossRefGoogle Scholar
  36. [36]
    H. Lin, A. Morisse and J.P. Shock, Strings on bubbling geometries, JHEP 06 (2010) 055 [arXiv:1003.4190] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    Y. Kimura, Non-holomorphic multi-matrix gauge invariant operators based on Brauer algebra, JHEP 12 (2009) 044 [arXiv:0910.2170] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    Y. Kimura, S. Ramgoolam and D. Turton, Free particles from Brauer algebras in complex matrix models, JHEP 05 (2010) 052 [arXiv:0911.4408] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    T. Brown, Cut-and-join operators and N = 4 super Yang-Mills, JHEP 05 (2010) 058 [arXiv:1002.2099] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    R. de Mello Koch, M. Dessein, D. Giataganas and C. Mathwin, Giant graviton oscillators, arXiv:1108.2761 [INSPIRE].
  41. [41]
    J. Pasukonis and S. Ramgoolam, From counting to construction of BPS states in N = 4 SYM, JHEP 02 (2011) 078 [arXiv:1010.1683] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    V. De Comarmond, R. de Mello Koch and K. Jefferies, Surprisingly simple spectra, JHEP 02 (2011) 006 [arXiv:1012.3884] [INSPIRE].Google Scholar
  43. [43]
    W. Carlson, R. de Mello Koch and H. Lin, Nonplanar integrability, JHEP 03 (2011) 105 [arXiv:1101.5404] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Departamento de FisicaUniversidad de OviedoOviedoSpain
  2. 2.Department of Particle Physics, Facultad de FisicaUniversidad de Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations