Skip to main content
Log in

Plasma conductivity at finite coupling

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

By taking into account the full O(α′3) type IIB string theory corrections to the supergravity action, we compute the leading finite ’t Hooft coupling O(λ−3/2) corrections to the conductivity of strongly-coupled SU(N ) N = 4 supersymmetric Yang-Mills plasma in the large N limit. We find that the conductivity is enhanced by the corrections, in agreement with the trend expected from previous perturbative weak-coupling computations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1133 ] [hep-th/9711200] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  2. S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  3. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  4. E. Shuryak, Why does the quark gluon plasma at RHIC behave as a nearly ideal fluid?, Prog. Part. Nucl. Phys. 53 (2004) 273 [hep-ph/0312227] [INSPIRE].

    Article  ADS  Google Scholar 

  5. M. Gyulassy and L. McLerran, New forms of QCD matter discovered at RHIC, Nucl. Phys. A 750 (2005) 30 [nucl-th/0405013] [INSPIRE].

    ADS  Google Scholar 

  6. B. Müller, From quark-gluon Plasma to the Perfect Liquid, Acta Phys. Polon. B 38 (2007) 3705 [arXiv:0710.3366] [INSPIRE].

    Google Scholar 

  7. J. Casalderrey-Solana and C.A. Salgado, Introductory lectures on jet quenching in heavy ion collisions, Acta Phys. Polon. B 38 (2007) 3731 [arXiv:0712.3443] [INSPIRE].

    ADS  Google Scholar 

  8. E. Shuryak, Physics of Strongly coupled quark-gluon Plasma, Prog. Part. Nucl. Phys. 62 (2009) 48 [arXiv:0807.3033] [INSPIRE].

    Article  ADS  Google Scholar 

  9. U.W. Heinz, The Strongly coupled quark-gluon plasma created at RHIC, J. Phys. A 42 (2009) 214003 [arXiv:0810.5529] [INSPIRE].

    ADS  Google Scholar 

  10. E. Iancu, Partons and jets in a strongly-coupled plasma from AdS/CFT, Acta Phys. Polon. B 39 (2008) 3213 [arXiv:0812.0500] [INSPIRE].

    ADS  Google Scholar 

  11. ALICE collaboration, J. Schukraft, First Results from the ALICE experiment at the LHC, Nucl. Phys. A 862-863 (2011) 78 [arXiv:1103.3474] [INSPIRE].

    ADS  Google Scholar 

  12. N. Armesto, et al., Heavy Ion Collisions at the LHC — Last Call for Predictions, J. Phys. G 35 (2008) 054001 [arXiv:0711.0974] [INSPIRE].

    Google Scholar 

  13. D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: Recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics, JHEP 09 (2002) 043 [hep-th/0205052] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. G. Policastro, D. Son and A. Starinets, The Shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 87 (2001) 081601 [hep-th/0104066] [INSPIRE].

    Article  ADS  Google Scholar 

  16. P. Kovtun, D.T. Son and A.O. Starinets, Holography and hydrodynamics: Diffusion on stretched horizons, JHEP 10 (2003) 064 [hep-th/0309213] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. P. Kovtun, D. Son and A. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [INSPIRE].

    Article  ADS  Google Scholar 

  18. D. Teaney, Finite temperature spectral densities of momentum and R-charge correlators in N = 4 Yang-Mills theory, Phys. Rev. D 74(2006) 045025 [hep-ph/0602044][INSPIRE].

    ADS  Google Scholar 

  19. R.C. Myers, A.O. Starinets and R.M. Thomson, Holographic spectral functions and diffusion constants for fundamental matter, JHEP 11 (2007) 091 [arXiv:0706.0162] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. S. Caron-Huot, P. Kovtun, G.D. Moore, A. Starinets and L.G. Yaffe, Photon and dilepton production in supersymmetric Yang-Mills plasma, JHEP 12 (2006) 015 [hep-th/0607237] [INSPIRE].

    Article  Google Scholar 

  21. A. Buchel, J.T. Liu and A.O. Starinets, Coupling constant dependence of the shear viscosity in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 707 (2005) 56 [hep-th/0406264] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. P. Benincasa and A. Buchel, Transport properties of N = 4 supersymmetric Yang-Mills theory at finite coupling, JHEP 01 (2006) 103 [hep-th/0510041] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. A. Buchel, Resolving disagreement for η/s in a CFT plasma at finite coupling, Nucl. Phys. B 803 (2008) 166 [arXiv:0805.2683] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. R.C. Myers, M.F. Paulos and A. Sinha, Quantum corrections to η/s, Phys. Rev. D 79 (2009) 041901 [arXiv:0806.2156] [INSPIRE].

    ADS  Google Scholar 

  25. A. Buchel, R.C. Myers, M.F. Paulos and A. Sinha, Universal holographic hydrodynamics at finite coupling, Phys. Lett. B 669 (2008) 364 [arXiv:0808.1837] [INSPIRE].

    ADS  Google Scholar 

  26. R.C. Myers, M.F. Paulos and A. Sinha, Holographic Hydrodynamics with a Chemical Potential, JHEP 06 (2009) 006 [arXiv:0903.2834] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. S. Cremonini, K. Hanaki, J.T. Liu and P. Szepietowski, Higher derivative effects on η/s at finite chemical potential, Phys. Rev. D 80 (2009) 025002 [arXiv:0903.3244] [INSPIRE].

    ADS  Google Scholar 

  28. B. Hassanain and M. Schvellinger, Towards ’t Hooft parameter corrections to charge transport in strongly-coupled plasma, JHEP 10 (2010) 068 [arXiv:1006.5480] [INSPIRE].

    Article  ADS  Google Scholar 

  29. B. Hassanain and M. Schvellinger, Holographic current correlators at finite coupling and scattering off a supersymmetric plasma, JHEP 04 (2010) 012 [arXiv:0912.4704] [INSPIRE].

    Article  ADS  Google Scholar 

  30. A. Ritz and J. Ward, Weyl corrections to holographic conductivity, Phys. Rev. D 79 (2009) 066003 [arXiv:0811.4195] [INSPIRE].

    ADS  Google Scholar 

  31. M.F. Paulos, Higher derivative terms including the Ramond-Ramond five-form, JHEP 10 (2008) 047 [arXiv:0804.0763] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. M. Cvetič et al., Embedding AdS black holes in ten-dimensions and eleven-dimensions, Nucl. Phys. B 558 (1999) 96 [hep-th/9903214] [INSPIRE].

    Article  ADS  Google Scholar 

  33. A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Charged AdS black holes and catastrophic holography, Phys. Rev. D 60 (1999) 064018 [hep-th/9902170] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  34. A. Sinha and R.C. Myers, The Viscosity bound in string theory, Nucl. Phys. A 830 (2009) 295C-298C [arXiv:0907.4798] [INSPIRE].

    ADS  Google Scholar 

  35. T. Banks and M.B. Green, Nonperturbative effects in AdS 5 × S 5 string theory and D = 4 SUSY Yang-Mills, JHEP 05 (1998) 002 [hep-th/9804170] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. S.S. Gubser, I.R. Klebanov and A.A. Tseytlin, Coupling constant dependence in the thermodynamics of N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 534 (1998) 202 [hep-th/9805156] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. J. Pawelczyk and S. Theisen, AdS 5 × S 5 black hole metric at O(alpha-prime**3), JHEP 09 (1998) 010 [hep-th/9808126] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. S. de Haro, A. Sinkovics and K. Skenderis, On a supersymmetric completion of the R 4 term in IIB supergravity, Phys. Rev. D 67 (2003) 084010 [hep-th/0210080] [INSPIRE].

    ADS  Google Scholar 

  39. S. de Haro, A. Sinkovics and K. Skenderis, On α corrections to D-brane solutions, Phys. Rev. D 68 (2003) 066001 [hep-th/0302136] [INSPIRE].

    ADS  Google Scholar 

  40. K. Peeters and A. Westerberg, The Ramond-Ramond sector of string theory beyond leading order, Class. Quant. Grav. 21 (2004) 1643 [hep-th/0307298] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. K. Peeters, A Field-theory motivated approach to symbolic computer algebra, Comput. Phys. Commun. 176 (2007) 550 [cs/0608005] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  42. K. Peeters, Introducing Cadabra: A Symbolic computer algebra system for field theory problems, hep-th/0701238 [INSPIRE].

  43. P.B. Arnold, G.D. Moore and L.G. Yaffe, Transport coefficients in high temperature gauge theories. 1. Leading log results, JHEP 11 (2000) 001 [hep-ph/0010177] [INSPIRE].

    Article  ADS  Google Scholar 

  44. H. Liu, K. Rajagopal and U.A. Wiedemann, Wilson loops in heavy ion collisions and their calculation in AdS/CFT, JHEP 03 (2007) 066 [hep-ph/0612168] [INSPIRE].

    Article  ADS  Google Scholar 

  45. J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U.A. Wiedemann, Gauge/String Duality, Hot QCD and Heavy Ion Collisions, arXiv:1101.0618 [INSPIRE].

  46. G. Aarts, C. Allton, J. Foley, S. Hands and S. Kim, Spectral functions at small energies and the electrical conductivity in hot, quenched lattice QCD, Phys. Rev. Lett. 99 (2007) 022002 [hep-lat/0703008] [INSPIRE].

    Article  ADS  Google Scholar 

  47. H.-T. Ding, A. Francis, O. Kaczmarek, F. Karsch, E. Laermann and W. Soeldner,, Thermal dilepton rate and electrical conductivity: An analysis of vector current correlation functions in quenched lattice QCD, Phys. Rev. D 83 (2011) 034504 [arXiv:1012.4963] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Schvellinger.

Additional information

ArXiv ePrint: 1108.6306

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hassanain, B., Schvellinger, M. Plasma conductivity at finite coupling. J. High Energ. Phys. 2012, 114 (2012). https://doi.org/10.1007/JHEP01(2012)114

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2012)114

Keywords

Navigation