Advertisement

Dark matter and LHC phenomenology in a left-right supersymmetric model

  • J. N. Esteves
  • J. C. Romao
  • M. Hirsch
  • W. Porod
  • F. StaubEmail author
  • A. Vicente
Article

Abstract

Left-right symmetric extensions of the Minimal Supersymmetric Standard Model can explain neutrino data and have potentially interesting phenomenology beyond that found in minimal SUSY seesaw models. Here we study a SUSY model in which the left-right symmetry is broken by triplets at a high scale, but significantly below the GUT scale. Sparticle spectra in this model differ from the usual constrained MSSM expectations and these changes affect the relic abundance of the lightest neutralino. We discuss changes for the standard stau (and stop) co-annihilation, the Higgs funnel and the focus point regions. The model has potentially large lepton flavour violation in both, left and right, scalar leptons and thus allows, in principle, also for flavoured co-annihilation. We also discuss lepton flavour signals due to violating decays of the second lightest neutralino at the LHC, which can be as large as 20 fb−1 at \( \sqrt {s} = 14{ }TeV \).

Keywords

Supersymmetry Phenomenology 

References

  1. [1]
    P. Minkowski, μ → eγ at a rate of one out of 1-billion muon Decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].ADSGoogle Scholar
  2. [2]
    T. Yanagida, Horizontal symmetry and masses of neutrinos, in the proceedings of the Workshop on the unified theory and the baryon number in the universe, O. Sawada and A. Sugamoto eds., KEK, Japan (1979).Google Scholar
  3. [3]
    M. Gell-Mann, P Ramond and R. Slansky, Complex spinors and unified theories, in Supergravity, P. van Niewenhuizen and D. Freedman eds., North Holland, The Netherlands (1979).Google Scholar
  4. [4]
    R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    J. Schechter and J. Valle, Neutrino masses in SU(2) × U(1) theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].ADSGoogle Scholar
  6. [6]
    T. Cheng and L.-F. Li, Neutrino masses, mixings and oscillations in SU(2) × U(1) models of electroweak interactions, Phys. Rev. D 22 (1980) 2860 [INSPIRE].ADSGoogle Scholar
  7. [7]
    J.C. Pati and A. Salam, Lepton number as the fourth color, Phys. Rev. D 10 (1974) 275 [Erratum ibid. D 11 (1975) 703-703] [INSPIRE].ADSGoogle Scholar
  8. [8]
    R. Mohapatra and J.C. Pati, A natural left-right symmetry, Phys. Rev. D 11 (1975) 2558 [INSPIRE].ADSGoogle Scholar
  9. [9]
    G. Senjanović and R.N. Mohapatra, Exact left-right symmetry and spontaneous violation of parity, Phys. Rev. D 12 (1975) 1502 [INSPIRE].ADSGoogle Scholar
  10. [10]
    R.N. Mohapatra and G. Senjanović, Neutrino masses and mixings in gauge models with spontaneous parity violation, Phys. Rev. D 23 (1981) 165 [INSPIRE].ADSGoogle Scholar
  11. [11]
    M. Cvetič and J.C. Pati, N = 1 supergravity within the minimal left-right symmetric model, Phys. Lett. B 135 (1984) 57 [INSPIRE].ADSGoogle Scholar
  12. [12]
    C.S. Aulakh, K. Benakli and G. Senjanović, Reconciling supersymmetry and left-right symmetry, Phys. Rev. Lett. 79 (1997) 2188 [hep-ph/9703434] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    C.S. Aulakh, A. Melfo, A. Rasin and G. Senjanović, Supersymmetry and large scale left-right symmetry, Phys. Rev. D 58 (1998) 115007 [hep-ph/9712551] [INSPIRE].ADSGoogle Scholar
  14. [14]
    P. Fileviez Perez and S. Spinner, Spontaneous R-parity breaking and left-right symmetry, Phys. Lett. B 673 (2009) 251 [arXiv:0811.3424] [INSPIRE].ADSGoogle Scholar
  15. [15]
    B. Brahmachari, E. Ma and U. Sarkar, Truly minimal left right model of quark and lepton masses, Phys. Rev. Lett. 91 (2003) 011801 [hep-ph/0301041] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    F. Siringo, A truly minimal left right symmetric extension of the standard model, Eur. Phys. J. C 32 (2004) 555 [hep-ph/0307320] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    K. Babu, B. Dutta and R. Mohapatra, Partial Yukawa unification and a supersymmetric origin of flavor mixing, Phys. Rev. D 60 (1999) 095004 [hep-ph/9812421] [INSPIRE].ADSGoogle Scholar
  18. [18]
    M. Drees, R. Godbole and P. Roy, Theory and phenomenology of sparticles: An account of four-dimensional N = 1 supersymmetry in high energy physics, World Scientific, U.S.A. (2004) [INSPIRE].Google Scholar
  19. [19]
    F. Borzumati and A. Masiero, Large muon and electron number violations in supergravity theories, Phys. Rev. Lett. 57 (1986) 961 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    Super-Kamiokande collaboration, Y. Fukuda et al., Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81 (1998) 1562 [hep-ex/9807003] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    SNO collaboration, Q. Ahmad et al., Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory, Phys. Rev. Lett. 89 (2002) 011301 [nucl-ex/0204008] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    KamLAND collaboration, K. Eguchi et al., First results from KamLAND: evidence for reactor anti-neutrino disappearance, Phys. Rev. Lett. 90 (2003) 021802 [hep-ex/0212021] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    J. Hisano, T. Moroi, K. Tobe, M. Yamaguchi and T. Yanagida, Lepton flavor violation in the supersymmetric standard model with seesaw induced neutrino masses, Phys. Lett. B 357 (1995) 579 [hep-ph/9501407] [INSPIRE].ADSGoogle Scholar
  24. [24]
    J. Hisano, T. Moroi, K. Tobe and M. Yamaguchi, Lepton flavor violation via right-handed neutrino Yukawa couplings in supersymmetric standard model, Phys. Rev. D 53 (1996) 2442 [hep-ph/9510309] [INSPIRE].ADSGoogle Scholar
  25. [25]
    J. Esteves et al., LHC and lepton flavour violation phenomenology of a left-right extension of the MSSM, JHEP 12 (2010) 077 [arXiv:1011.0348] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    Y. Kuno and Y. Okada, Muon decay and physics beyond the standard model, Rev. Mod. Phys. 73 (2001) 151 [hep-ph/9909265] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    M. Hirsch, S. Kaneko and W. Porod, Supersymmetric seesaw type. II. LHC and lepton flavour violating phenomenology, Phys. Rev. D 78 (2008) 093004 [arXiv:0806.3361] [INSPIRE].ADSGoogle Scholar
  28. [28]
    M. Hirsch, L. Reichert and W. Porod, Supersymmetric mass spectra and the seesaw scale, JHEP 05 (2011) 086 [arXiv:1101.2140] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    J. Esteves, J. Romao, M. Hirsch, F. Staub and W. Porod, Supersymmetric type-III seesaw: lepton flavour violating decays and dark matter, Phys. Rev. D 83 (2011) 013003 [arXiv:1010.6000] [INSPIRE].ADSGoogle Scholar
  30. [30]
    M.R. Buckley and H. Murayama, How can we test seesaw experimentally?, Phys. Rev. Lett. 97 (2006) 231801 [hep-ph/0606088] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    V. De Romeri, M. Hirsch and M. Malinsky, Soft masses in SUSY SO(10) GUTs with low intermediate scales, Phys. Rev. D 84 (2011) 053012 [arXiv:1107.3412] [INSPIRE].ADSGoogle Scholar
  32. [32]
    J. Esteves, S. Kaneko, J. Romao, M. Hirsch and W. Porod, Dark matter in minimal supergravity with type-II seesaw, Phys. Rev. D 80 (2009) 095003 [arXiv:0907.5090] [INSPIRE].ADSGoogle Scholar
  33. [33]
    C. Biggio and L. Calibbi, Phenomenology of SUSY SU(5) with type-I+III seesaw, JHEP 10 (2010) 037 [arXiv:1007.3750] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    M. Drees and J.M. Kim, Neutralino dark matter in an SO(10) model with two-step intermediate scale symmetry breaking, JHEP 12 (2008) 095 [arXiv:0810.1875] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    M. Drees and M.M. Nojiri, The Neutralino relic density in minimal N = 1 supergravity, Phys. Rev. D 47 (1993) 376 [hep-ph/9207234] [INSPIRE].ADSGoogle Scholar
  36. [36]
    WMAP collaboration, E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    D. Choudhury, R. Garani and S.K. Vempati, Flavored co-annihilations, arXiv:1104.4467 [INSPIRE].
  38. [38]
    R. Kuchimanchi and R. Mohapatra, No parity violation without R-parity violation, Phys. Rev. D 48 (1993) 4352 [hep-ph/9306290] [INSPIRE].ADSGoogle Scholar
  39. [39]
    R. Kuchimanchi and R. Mohapatra, Upper bound on the W (R) mass in automatically R conserving SUSY models, Phys. Rev. Lett. 75 (1995) 3989 [hep-ph/9509256] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    J. Kopp, M. Lindner, V. Niro and T.E. Underwood, On the consistency of perturbativity and gauge coupling unification, Phys. Rev. D 81 (2010) 025008 [arXiv:0909.2653] [INSPIRE].ADSGoogle Scholar
  41. [41]
    S. Weinberg, Effective gauge theories, Phys. Lett. B 91 (1980) 51 [INSPIRE].ADSGoogle Scholar
  42. [42]
    B.A. Ovrut and H.J. Schnitzer, Gauge theories with minimal subtraction and the decoupling theorem, Nucl. Phys. B 179 (1981) 381 [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    L.J. Hall, Grand unification of effective gauge theories, Nucl. Phys. B 178 (1981) 75 [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    S.K. Majee, M.K. Parida, A. Raychaudhuri and U. Sarkar, Low intermediate scales for leptogenesis in SUSY SO(10) GUTs, Phys. Rev. D 75 (2007) 075003 [hep-ph/0701109] [INSPIRE].ADSGoogle Scholar
  45. [45]
    D. Borah and U.A. Yajnik, Supersymmetric left-right models with gauge coupling unification and fermion mass universality, Phys. Rev. D 83 (2011) 095004 [arXiv:1010.6289] [INSPIRE].ADSGoogle Scholar
  46. [46]
    B. Holdom, Two U(1)’s and epsilon charge shifts, Phys. Lett. B 166 (1986) 196 [INSPIRE].ADSGoogle Scholar
  47. [47]
    M. Malinsky, J. Romao and J. Valle, Novel supersymmetric SO(10) seesaw mechanism, Phys. Rev. Lett. 95 (2005) 161801 [hep-ph/0506296] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    R.M. Fonseca, M. Malinsky, W. Porod and F. Staub, Running soft parameters in SUSY models with multiple U(1) gauge factors, Nucl. Phys. B 854 (2012) 28 [arXiv:1107.2670] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    F. Staub, SARAH, arXiv:0806.0538 [INSPIRE].
  50. [50]
    F. Staub, From superpotential to model files for FeynArts and CalcHep/CompHEP, Comput. Phys. Commun. 181 (2010) 1077 [arXiv:0909.2863] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  51. [51]
    F. Staub, Automatic calculation of supersymmetric renormalization group equations and self energies, Comput. Phys. Commun. 182 (2011) 808 [arXiv:1002.0840] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  52. [52]
    W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e + e colliders, Comput. Phys. Commun. 153 (2003) 275 [hep-ph/0301101] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    W. Porod and F. Staub, SPheno 3.1: extensions including flavour, CP-phases and models beyond the MSSM, arXiv:1104.1573 [INSPIRE].
  54. [54]
    F. Staub, T. Ohl, W. Porod and C. Speckner, A tool box for implementing supersymmetric models, arXiv:1109.5147 [INSPIRE].
  55. [55]
    CMS collaboration, V. Khachatryan et al., Search for supersymmetry in pp collisions at 7 TeV in events with jets and missing transverse energy, Phys. Lett. B 698 (2011) 196 [arXiv:1101.1628] [INSPIRE].ADSGoogle Scholar
  56. [56]
    ATLAS collaboration, G. Aad et al., Search for supersymmetry using final states with one lepton, jets and missing transverse momentum with the ATLAS detector in \( \sqrt {s} = 7{ }TeV \) pp, Phys. Rev. Lett. 106 (2011) 131802 [arXiv:1102.2357] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    ATLAS collaboration, G. Aad et al., Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt {s} = 7{ }TeV \) proton-proton collisions, Phys. Lett. B 701 (2011) 186 [arXiv:1102.5290] [INSPIRE].ADSGoogle Scholar
  58. [58]
    CMS collaboration, S. Chatrchyan et al., Search for supersymmetry at the LHC in events with jets and missing transverse energy, Phys. Rev. Lett. 107 (2011) 221804 [arXiv:1109.2352] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    MEG: search for μ→eγ down to 10−14 branching ratio, proposal to OSI, documents and status at http://meg.web.psi.ch/.
  60. [60]
    MEG collaboration, J. Adam et al., New limit on the lepton-flavour violating decay μ + → e + γ, Phys. Rev. Lett. 107 (2011) 171801 [arXiv:1107.5547] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    W. Chao, Neutrino masses and lepton-flavor-violating τ decays in the supersymmetric left-right model, Chin. Phys. C 35 (2011) 214 [arXiv:0705.4351] [INSPIRE].ADSGoogle Scholar
  62. [62]
    Y. Okada, K.-i. Okumura and Y. Shimizu, M u → eγ and μ → 3e processes with polarized muons and supersymmetric grand unified theories, Phys. Rev. D 61 (2000) 094001 [hep-ph/9906446] [INSPIRE].ADSGoogle Scholar
  63. [63]
    J. Hisano, M. Nagai, P. Paradisi and Y. Shimizu, Waiting for μ → eγ from the MEG experiment, JHEP 12 (2009) 030 [arXiv:0904.2080] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    A. Buras, P. Gambino, M. Gorbahn, S. Jager and L. Silvestrini, Universal unitarity triangle and physics beyond the standard model, Phys. Lett. B 500 (2001) 161 [hep-ph/0007085] [INSPIRE].ADSGoogle Scholar
  65. [65]
    G. D’Ambrosio, G. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: an effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. 37 (2010) 075021.ADSCrossRefGoogle Scholar
  67. [67]
    K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances, Phys. Rev. D 43 (1991) 3191 [INSPIRE].ADSGoogle Scholar
  68. [68]
    J.R. Ellis, T. Falk and K.A. Olive, Neutralino-stau coannihilation and the cosmological upper limit on the mass of the lightest supersymmetric particle, Phys. Lett. B 444 (1998) 367 [hep-ph/9810360] [INSPIRE].ADSGoogle Scholar
  69. [69]
    C. Boehm, A. Djouadi and M. Drees, Light scalar top quarks and supersymmetric dark matter, Phys. Rev. D 62 (2000) 035012 [hep-ph/9911496] [INSPIRE].ADSGoogle Scholar
  70. [70]
    J.R. Ellis, K.A. Olive and Y. Santoso, Calculations of neutralino stop coannihilation in the CMSSM, Astropart. Phys. 18 (2003) 395 [hep-ph/0112113] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    J. Edsjo, M. Schelke, P. Ullio and P. Gondolo, Accurate relic densities with neutralino, chargino and sfermion coannihilations in mSUGRA, JCAP 04 (2003) 001 [hep-ph/0301106] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    J.L. Feng, K.T. Matchev and F. Wilczek, Neutralino dark matter in focus point supersymmetry, Phys. Lett. B 482 (2000) 388 [hep-ph/0004043] [INSPIRE].ADSGoogle Scholar
  73. [73]
    J.L. Feng, K.T. Matchev and T. Moroi, Focus points and naturalness in supersymmetry, Phys. Rev. D 61 (2000) 075005 [hep-ph/9909334] [INSPIRE].ADSGoogle Scholar
  74. [74]
    J.R. Ellis, J. Hagelin, D.V. Nanopoulos, K.A. Olive and M. Srednicki, Supersymmetric relics from the Big Bang, Nucl. Phys. B 238 (1984) 453 [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 2.0: a program to calculate the relic density of dark matter in a generic model, Comput. Phys. Commun. 176 (2007) 367 [hep-ph/0607059] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  77. [77]
    M. Hirsch, J. Valle, W. Porod, J. Romao and A. Villanova del Moral, Probing minimal supergravity in type-I seesaw with lepton flavour violation at the LHC, Phys. Rev. D 78 (2008) 013006 [arXiv:0804.4072] [INSPIRE].ADSGoogle Scholar
  78. [78]
    F. Staub, RGEs for supersymmetric left-right model, SARAH output, http://theorie.physik.uni-wuerzburg.de/˜fnstaub/Supplementary/Omega2.pdf
  79. [79]
    B. Allanach, J. Conlon and C. Lester, Measuring smuon-selectron mass splitting at the CERN LHC and patterns of supersymmetry breaking, Phys. Rev. D 77 (2008) 076006 [arXiv:0801.3666] [INSPIRE].ADSGoogle Scholar
  80. [80]
    A.J. Buras, L. Calibbi and P. Paradisi, Slepton mass-splittings as a signal of LFV at the LHC, JHEP 06 (2010) 042 [arXiv:0912.1309] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    A. Abada, A. Figueiredo, J. Romao and A. Teixeira, Interplay of LFV and slepton mass splittings at the LHC as a probe of the SUSY seesaw, JHEP 10 (2010) 104 [arXiv:1007.4833] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    B. O’Leary, LHC-FASER light, https://github.com/benoleary/LHC-FASER light.
  83. [83]
    W. Beenakker, R. Hopker and M. Spira, PROSPINO: a program for the production of supersymmetric particles in next-to-leading order QCD, hep-ph/9611232 [INSPIRE].
  84. [84]
    N. Arkani-Hamed, H.-C. Cheng, J.L. Feng and L.J. Hall, Probing lepton flavor violation at future colliders, Phys. Rev. Lett. 77 (1996) 1937 [hep-ph/9603431] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    N. Arkani-Hamed, J.L. Feng, L.J. Hall and H.-C. Cheng, CP violation from slepton oscillations at the LHC and NLC, Nucl. Phys. B 505 (1997) 3 [hep-ph/9704205] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • J. N. Esteves
    • 1
  • J. C. Romao
    • 1
  • M. Hirsch
    • 2
  • W. Porod
    • 3
  • F. Staub
    • 3
    Email author
  • A. Vicente
    • 3
  1. 1.AHEP Group, Instituto de Física Corpuscular — C.S.I.C./Universitat de València, Edificio de Institutos de PaternaValènciaSpain
  2. 2.Departamento de F´ısica and CFTP, Instituto Superior Técnico, Universidade Técnica de LisboaLisboaPortugal
  3. 3.Institut für Theoretische Physik und Astronomie, Universität Würzburg, Am HublandWuerzburgGermany

Personalised recommendations