Friedel oscillations in holographic metals

  • V. Giangreco M. Puletti
  • S. Nowling
  • L. Thorlacius
  • T. Zingg
Article

Abstract

In this article we study the conditions under which holographic metallic states display Friedel oscillations. We focus on systems where the bulk charge density is not hidden behind a black hole horizon. Understanding holographic Friedel oscillations gives a clean way to characterize the boundary system, complementary to probe fermion calculations. We find that fermions in a “hard wall” AdS geometry unambiguously display Friedel oscillations. However, similar oscillations are washed out for electron stars, suggesting a smeared continuum of Fermi surfaces.

Keywords

Holography and condensed matter physics (AdS/CMT) Gauge-gravity correspondence AdS-CFT Correspondence 

References

  1. [1]
    S.A. Hartnoll, Horizons, holography and condensed matter, arXiv:1106.4324 [INSPIRE].
  2. [2]
    S. Sachdev, What can gauge-gravity duality teach us about condensed matter physics?, arXiv:1108.1197 [INSPIRE].
  3. [3]
    N. Iqbal, H. Liu and M. Mezei, Lectures on holographic non-Fermi liquids and quantum phase transitions, arXiv:1110.3814 [INSPIRE].
  4. [4]
    J. Polchinski, Effective field theory and the Fermi surface, hep-th/9210046 [INSPIRE].
  5. [5]
    R. Shankar, Renormalization-group approach to interacting fermions, Rev. Mod. Phys. 66 (1994) 129 [cond-mat/9307009].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    S.-S. Lee, Low-energy effective theory of Fermi surface coupled with U(1) gauge field in 2 + 1 dimensions, Phys. Rev. B 80 (2009) 165102 [arXiv:0905.4532].ADSGoogle Scholar
  7. [7]
    M.A. Metlitski and S. Sachdev, Quantum phase transitions of metals in two spatial dimensions: I. Ising-nematic order, Phys. Rev. B 82 (2010) 075127 [arXiv:1001.1153] [INSPIRE].ADSGoogle Scholar
  8. [8]
    M.A. Metlitski and S. Sachdev, Quantum phase transitions of metals in two spatial dimensions: II. Spin density wave order, Phys. Rev. B 82 (2010) 075128 [arXiv:1005.1288] [INSPIRE].ADSGoogle Scholar
  9. [9]
    S.-S. Lee, A non-Fermi liquid from a charged black hole: a critical Fermi ball, Phys. Rev. D 79 (2009) 086006 [arXiv:0809.3402] [INSPIRE].ADSGoogle Scholar
  10. [10]
    H. Liu, J. McGreevy and D. Vegh, Non-Fermi liquids from holography, Phys. Rev. D 83 (2011) 065029 [arXiv:0903.2477] [INSPIRE].ADSGoogle Scholar
  11. [11]
    T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality, Fermi surfaces and AdS 2, Phys. Rev. D 83 (2011) 125002 [arXiv:0907.2694] [INSPIRE].ADSGoogle Scholar
  12. [12]
    M. Cubrovic, J. Zaanen and K. Schalm, String theory, quantum phase transitions and the emergent Fermi-liquid, Science 325 (2009) 439 [arXiv:0904.1993] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    F. Denef, S.A. Hartnoll and S. Sachdev, Quantum oscillations and black hole ringing, Phys. Rev. D 80 (2009) 126016 [arXiv:0908.1788] [INSPIRE].ADSGoogle Scholar
  14. [14]
    S.A. Hartnoll, J. Polchinski, E. Silverstein and D. Tong, Towards strange metallic holography, JHEP 04 (2010) 120 [arXiv:0912.1061] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    T. Faulkner and J. Polchinski, Semi-holographic Fermi liquids, JHEP 06 (2011) 012 [arXiv:1001.5049] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    S. Sachdev, Holographic metals and the fractionalized Fermi liquid, Phys. Rev. Lett. 105 (2010) 151602 [arXiv:1006.3794] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    S.A. Hartnoll and A. Tavanfar, Electron stars for holographic metallic criticality, Phys. Rev. D 83 (2011) 046003 [arXiv:1008.2828] [INSPIRE].ADSGoogle Scholar
  18. [18]
    M. Cubrovic, J. Zaanen and K. Schalm, Constructing the AdS dual of a Fermi liquid: AdS black holes with Dirac hair, JHEP 10 (2011) 017 [arXiv:1012.5681] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    S.A. Hartnoll, D.M. Hofman and A. Tavanfar, Holographically smeared Fermi surface: quantum oscillations and Luttinger count in electron stars, Europhys. Lett. 95 (2011) 31002 [arXiv:1011.2502] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    N. Iizuka, N. Kundu, P. Narayan and S.P. Trivedi, Holographic Fermi and non-Fermi liquids with transitions in dilaton gravity, arXiv:1105.1162 [INSPIRE].
  21. [21]
    S.A. Hartnoll, D.M. Hofman and D. Vegh, Stellar spectroscopy: fermions and holographic Lifshitz criticality, JHEP 08 (2011) 096 [arXiv:1105.3197] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    X. Arsiwalla, J. de Boer, K. Papadodimas and E. Verlinde, Degenerate stars and gravitational collapse in AdS/CFT, JHEP 01 (2011) 144 [arXiv:1010.5784] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    M. Cubrovic, Y. Liu, K. Schalm, Y.-W. Sun and J. Zaanen, Spectral probes of the holographic Fermi groundstate: dialing between the electron star and AdS Dirac hair, Phys. Rev. D 84 (2011) 086002 [arXiv:1106.1798] [INSPIRE].ADSGoogle Scholar
  24. [24]
    M. Edalati, K.W. Lo and P.W. Phillips, Neutral order parameters in metallic criticality in d = 2 + 1 from a hairy electron star, Phys. Rev. D 84 (2011) 066007 [arXiv:1106.3139] [INSPIRE].ADSGoogle Scholar
  25. [25]
    S. Sachdev, A model of a Fermi liquid using gauge-gravity duality, Phys. Rev. D 84 (2011) 066009 [arXiv:1107.5321] [INSPIRE].ADSGoogle Scholar
  26. [26]
    V.G.M. Puletti, S. Nowling, L. Thorlacius and T. Zingg, Holographic metals at finite temperature, JHEP 01 (2011) 117 [arXiv:1011.6261] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    S.A. Hartnoll and P. Petrov, Electron star birth: a continuous phase transition at nonzero density, Phys. Rev. Lett. 106 (2011) 121601 [arXiv:1011.6469] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M. Kulaxizi and A. Parnachev, Holographic responses of fermion matter, Nucl. Phys. B 815 (2009) 125 [arXiv:0811.2262] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    S. Powell, S. Sachdev and H.P. Büchler, Depletion of the Bose-Einstein condensate in Bose-Fermi mixtures, Phys. Rev. B 72 (2005) 024534 [cond-mat/0502299].ADSGoogle Scholar
  30. [30]
    J.I. Kapusta and C. Gale, Finite-temperature field theory: principles and applications, Cambridge University Press, Cambridge U.K. (2006) [INSPIRE].MATHCrossRefGoogle Scholar
  31. [31]
    A.L. Fetter and J.D. Walecka, Quantum theory of many-particle systems, Dover Publications, New York U.S.A. (2003).Google Scholar
  32. [32]
    J. Erlich, E. Katz, D.T. Son and M.A. Stephanov, QCD and a holographic model of hadrons, Phys. Rev. Lett. 95 (2005) 261602 [hep-ph/0501128] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].MathSciNetMATHGoogle Scholar
  34. [34]
    L. Huijse and S. Sachdev, Fermi surfaces and gauge-gravity duality, Phys. Rev. D 84 (2011) 026001 [arXiv:1104.5022] [INSPIRE].ADSGoogle Scholar
  35. [35]
    M. Edalati, J.I. Jottar and R.G. Leigh, Shear modes, criticality and extremal black holes, JHEP 04 (2010) 075 [arXiv:1001.0779] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    M. Edalati, J.I. Jottar and R.G. Leigh, Holography and the sound of criticality, JHEP 10 (2010) 058 [arXiv:1005.4075] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    J.I. Kapusta and T. Toimela, Friedel oscillations in relativistic QED and QCD, Phys. Rev. D 37 (1988) 3731 [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • V. Giangreco M. Puletti
    • 1
  • S. Nowling
    • 2
  • L. Thorlacius
    • 2
    • 3
  • T. Zingg
    • 2
    • 3
  1. 1.Department of Fundamental PhysicsChalmers University of TechnologyGöteborgSweden
  2. 2.NorditaStockholmSweden
  3. 3.Science InstituteUniversity of IcelandReykjavikIceland

Personalised recommendations