(0,2) elephants

  • Paul S. Aspinwall
  • Ilarion V. Melnikov
  • M. Ronen Plesser


We enumerate massless E6 singlets for (0,2)-compactifications of the heterotic string on a Calabi-Yau threefold with the “standard embedding” in three distinct ways. In the large radius limit of the threefold, these singlets count deformations of the Calabi-Yau together with its tangent bundle. In the “small-radius” limit we apply Landau-Ginzburg methods. In the orbifold limit we use a combination of geometry and free field methods. In general these counts differ. We show how to identify states between these phases and how certain states vanish from the massless spectrum as one deforms the complex structure or Kähler form away from the Gepner point. The appearance of extra singlets for particular values of complex structure is explored in all three pictures, and our results suggest that this does not depend on the Kähler moduli.


Superstrings and Heterotic Strings Conformal Field Models in String Theory Superstring Vacua 


  1. [1]
    P. Candelas, G.T. Horowitz, A. Strominger and E. Witten, Vacuum configurations for superstrings, Nucl. Phys. B 258 (1985) 46 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    T. Banks and L.J. Dixon, Constraints on string vacua with space-time supersymmetry, Nucl. Phys. B 307 (1988) 93 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    L.J. Dixon, Some world-sheet properties of superstring compactifications, on orbifolds and otherwise, in Superstrings, unified theories, and cosmology 1987, G. Furlan et al. eds., World Scientific, Singapore (1988) 67.Google Scholar
  4. [4]
    G. Tian, Smoothness of the universal deformation space of compact Calabi-Yau manifolds and its Petersson-Weil metric, in Mathematical Aspects of String Theory, S.-T. Yau ed., World Scientific, Singapore (2987) 629.Google Scholar
  5. [5]
    P. Berglund, T. Hübsch and L. Parkes, Gauge neutral matter in three generation superstring compactifications, Mod. Phys. Lett. A 5 (1990) 1485 [INSPIRE].ADSGoogle Scholar
  6. [6]
    M. Dine, N. Seiberg, X. Wen and E. Witten, Nonperturbative effects on the string world sheet, Nucl. Phys. B 278 (1986) 769 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    C. Lütken and G.G. Ross, Taxonomy of heterotic superconformal field theories, Phys. Lett. B 213 (1988) 152 [INSPIRE].ADSGoogle Scholar
  8. [8]
    E. Witten, Phases of N = 2 theories in two-dimensions, Nucl. Phys. B 403 (1993) 159 [hep-th/9301042] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    M. Kreuzer, J. McOrist, I.V. Melnikov and M. Plesser, (0,2) deformations of linear σ-models, JHEP 07 (2011) 044 [arXiv:1001.2104] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    E. Silverstein and E. Witten, Criteria for conformal invariance of (0,2) models, Nucl. Phys. B 444 (1995) 161 [hep-th/9503212] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    A. Basu and S. Sethi, World sheet stability of (0,2) linear σ-models, Phys. Rev. D 68 (2003) 025003 [hep-th/0303066] [INSPIRE].MathSciNetADSGoogle Scholar
  12. [12]
    C. Beasley and E. Witten, Residues and world sheet instantons, JHEP 10 (2003) 065 [hep-th/0304115] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    L.J. Dixon, J.A. Harvey, C. Vafa and E. Witten, Strings on orbifolds, Nucl. Phys. B 261 (1985) 678 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    E.J. Martinec, Algebraic geometry and effective Lagrangians, Phys. Lett. B 217 (1989) 431 [INSPIRE].MathSciNetADSGoogle Scholar
  15. [15]
    C. Vafa and N.P. Warner, Catastrophes and the classification of conformal theories, Phys. Lett. B 218 (1989) 51 [INSPIRE].MathSciNetADSGoogle Scholar
  16. [16]
    S. Kachru and E. Witten, Computing the complete massless spectrum of a Landau-Ginzburg orbifold, Nucl. Phys. B 407 (1993) 637 [hep-th/9307038] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    E. Witten, On the Landau-Ginzburg description of N = 2 minimal models, Int. J. Mod. Phys. A 9 (1994) 4783 [hep-th/9304026] [INSPIRE].MathSciNetADSGoogle Scholar
  18. [18]
    J. Distler and S. Kachru, (0,2) Landau-Ginzburg theory, Nucl. Phys. B 413 (1994) 213 [hep-th/9309110] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    T. Kawai and K. Mohri, Geometry of (0,2) Landau-Ginzburg orbifolds, Nucl. Phys. B 425 (1994) 191 [hep-th/9402148] [INSPIRE].MathSciNetADSGoogle Scholar
  20. [20]
    J. Distler, Notes on (0,2) superconformal field theories, hep-th/9502012 [INSPIRE].
  21. [21]
    D. Gepner, Space-Time supersymmetry in compactified string theory and superconformal models, Nucl. Phys. B 296 (1988) 757 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    C. Vafa, String vacua and orbifoldized L-G models, Mod. Phys. Lett. A 4 (1989) 1169 [INSPIRE].MathSciNetADSGoogle Scholar
  23. [23]
    K.A. Intriligator and C. Vafa, Landau-Ginzburg orbifolds, Nucl. Phys. B 339 (1990) 95 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    D. Gepner, Exactly solvable string compactifications on manifolds of SU(N) holonomy, Phys. Lett. B 199 (1987) 380 [INSPIRE].MathSciNetADSGoogle Scholar
  25. [25]
    B.R. Greene and M. Plesser, Duality in Calabi-Yau moduli space, Nucl. Phys. B 338 (1990) 15 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    M. Green, J. Schwarz, and E. Witten, Superstring theory, Cambridge University Press, Cambridge U.K. (1987).zbMATHGoogle Scholar
  27. [27]
    M.G. Eastwood and T. Hübsch, Endomorphism valued cohomology and gauge neutral matter, Commun. Math. Phys. 132 (1990) 383 [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  28. [28]
    T. Hübsch, Calabi-Yau manifolds: a bestiary for physicists, World Scientific, Singapore (1992).zbMATHCrossRefGoogle Scholar
  29. [29]
    V. Batyrev, Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Alg. Geom. 3 (1994) 493 [INSPIRE].MathSciNetzbMATHGoogle Scholar
  30. [30]
    V.V. Batyrev and L.A. Borisov, Dual cones and mirror symmetry for generalized Calabi-Yau manifolds, in Mirror Symmetry II, B. Greene and S.-T. Yau eds., International Press (1994) 71 [math.AG/9402002].
  31. [31]
    D.A. Cox, The homogeneous coordinate ring of a toric variety, revised version, alg-geom/9210008 [INSPIRE].
  32. [32]
    V.V. Batyrev and D.A. Cox, On the Hodge structure of projective hypersurfaces in toric varieties, Duke Math. J. 75 (1994) 293 [math.AG/9306011].MathSciNetzbMATHCrossRefGoogle Scholar
  33. [33]
    H. Cartan and S. Eilenberg, Homological algebra, Princeton University Press, Princeton U.S.A. (1956).zbMATHGoogle Scholar
  34. [34]
    G.G. Smith, NormalToricVarietiesa package for Macaulay 2, to appear in the Macaulay 2 distribution.Google Scholar
  35. [35]
    N.O. Ilten, Deformations of smooth toric surfaces, arXiv:0902.0529.
  36. [36]
    S.I. Gelfand and Y.I. Manin, Homological algebra, Encyclopædia of Mathematical Sciences 38, Springer, Berlin Germany (1994).Google Scholar
  37. [37]
    C.A. Weibel, An introduction to homological algebra, Cambridge Stud. in Adv. Math. 38, Cambridge University Press, Cambridge U.K. (1994).Google Scholar
  38. [38]
    P. Seidel and R.P. Thomas, Braid group actions on derived categories of coherent sheaves, math/0001043 [INSPIRE].
  39. [39]
    E. Witten, New issues in manifolds of SU(3) holonomy, Nucl. Phys. B 268 (1986) 79 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    P.S. Aspinwall, B.R. Greene and D.R. Morrison, The monomial divisor mirror map, alg-geom/9309007 [INSPIRE].
  41. [41]
    P. Candelas, X. de la Ossa and S.H. Katz, Mirror symmetry for Calabi-Yau hypersurfaces in weighted p 4 and extensions of Landau-Ginzburg theory, Nucl. Phys. B 450 (1995) 267 [hep-th/9412117] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    A. Avram, P. Candelas, D. Jančic and M. Mandelberg, On the connectedness of moduli spaces of Calabi-Yau manifolds, Nucl. Phys. B 465 (1996) 458 [hep-th/9511230] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    P.M.H. Wilson, The Kähler Cone on Calabi-Yau threefolds, Invent. Math. 107 (1992) 561.MathSciNetADSzbMATHCrossRefGoogle Scholar
  44. [44]
    P. Candelas, X. De La Ossa, A. Font, S.H. Katz and D.R. Morrison, Mirror symmetry for two parameter models. 1., Nucl. Phys. B 416 (1994) 481 [hep-th/9308083] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    A. Grothendieck, Local cohomology, Lecture Notes in Math. 41, Springer, Berlin Germany (1967).Google Scholar
  46. [46]
    D. Eisenbud, M. Mustata and M. Stillman, Cohomology on toric varieties and local cohomology with monomial supports, math/0001159.
  47. [47]
    R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics 52, Springer-Verlag, New York U.S.A. (1977).Google Scholar
  48. [48]
    R. Bott and L.W. Tu, Differential forms in algebraic topology, Springer-Verlag, New York U.S.A. (1982).zbMATHGoogle Scholar
  49. [49]
    M. Mustata, Local cohomology at monomial ideals, math/0001153.

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Paul S. Aspinwall
    • 1
  • Ilarion V. Melnikov
    • 2
  • M. Ronen Plesser
    • 1
  1. 1.Center for Geometry and Theoretical PhysicsDuke UniversityDurhamUK
  2. 2.Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)GolmGermany

Personalised recommendations