Hamilton-Jacobi renormalization for Lifshitz spacetime

Open Access
Article

Abstract

Just like AdS spacetimes, Lifshitz spacetimes require counterterms in order to make the on-shell value of the bulk action finite. We study these counterterms using the Hamilton-Jacobi method. Rather than imposing boundary conditions from the start, we will derive suitable boundary conditions by requiring that divergences can be canceled using only local counterterms. We will demonstrate in examples that this procedure indeed leads to a finite bulk action while at the same time it determines the asymptotic behavior of the fields. This puts more substance to the belief that Lifshitz spacetimes are dual to well-behaved field theories. As a byproduct, we will find the analogue of the conformal anomaly for Lifshitz spacetimes.

Keywords

Gauge-gravity correspondence Holography and condensed matter physics (AdS/CMT) 

References

  1. [1]
    S. Kachru, X. Liu and M. Mulligan, Gravity duals of Lifshitz-like fixed points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [INSPIRE].MathSciNetADSGoogle Scholar
  2. [2]
    P. Koroteev and M. Libanov, On existence of self-tuning solutions in static braneworlds without singularities, JHEP 02 (2008) 104 [arXiv:0712.1136] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    S.A. Hartnoll and A. Tavanfar, Electron stars for holographic metallic criticality, Phys. Rev. D 83 (2011) 046003 [arXiv:1008.2828] [INSPIRE]ADSGoogle Scholar
  4. [4]
    K. Balasubramanian and K. Narayan, Lifshitz spacetimes from AdS null and cosmological solutions, JHEP 08 (2010) 014 [arXiv:1005.3291] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    A. Donos and J.P. Gauntlett, Lifshitz solutions of D = 10 and D = 11 supergravity, JHEP 12 (2010) 002 [arXiv:1008.2062] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    R. Gregory, S.L. Parameswaran, G. Tasinato and I. Zavala, Lifshitz solutions in supergravity and string theory, JHEP 12 (2010) 047 [arXiv:1009.3445] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    D. Cassani and A.F. Faedo, Constructing Lifshitz solutions from AdS, JHEP 05 (2011) 013 [arXiv:1102.5344] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    N. Halmagyi, M. Petrini and A. Zaffaroni, Non-Relativistic solutions of N = 2 gauged supergravity, JHEP 08 (2011) 041 [arXiv:1102.5740] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    W. Chemissany and J. Hartong, From D3-branes to Lifshitz space-times, Class. Quant. Grav. 28 (2011) 195011 [arXiv:1105.0612] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    I. Amado and A.F. Faedo, Lifshitz black holes in string theory, JHEP 07 (2011) 004 [arXiv:1105.4862] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    M. Guica, K. Skenderis, M. Taylor and B.C. van Rees, Holography for Schrödinger backgrounds, JHEP 02 (2011) 056 [arXiv:1008.1991] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    S.F. Ross and O. Saremi, Holographic stress tensor for non-relativistic theories, JHEP 09 (2009) 009 [arXiv:0907.1846] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    S.F. Ross, Holography for asymptotically locally Lifshitz spacetimes, Class. Quant. Grav. 28 (2011) 215019 [arXiv:1107.4451] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    M. Taylor, Non-relativistic holography, arXiv:0812.0530 [INSPIRE].
  15. [15]
    A. Adams, A. Maloney, A. Sinha and S.E. Vazquez, 1/N effects in non-relativistic gauge-gravity duality, JHEP 03 (2009) 097 [arXiv:0812.0166] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    B.C. van Rees, Holographic renormalization for irrelevant operators and multi-trace counterterms, JHEP 08 (2011) 093 [arXiv:1102.2239] [INSPIRE].CrossRefGoogle Scholar
  17. [17]
    M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    J. de Boer, E.P. Verlinde and H.L. Verlinde, On the holographic renormalization group, JHEP 08 (2000) 003 [hep-th/9912012] [INSPIRE].CrossRefGoogle Scholar
  19. [19]
    J. Kalkkinen, D. Martelli and W. Mueck, Holographic renormalization and anomalies, JHEP 04 (2001) 036 [hep-th/0103111] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    D. Martelli and W. Mueck, Holographic renormalization and Ward identities with the Hamilton-Jacobi method, Nucl. Phys. B 654 (2003) 248 [hep-th/0205061] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    R.B. Mann and R. McNees, Holographic renormalization for asymptotically Lifshitz spacetimes, JHEP 10 (2011) 129 [arXiv:1107.5792] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J. de Boer, The holographic renormalization group, Fortsch. Phys. 49 (2001) 339 [hep-th/0101026] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  23. [23]
    J. Tarrio and S. Vandoren, Black holes and black branes in Lifshitz spacetimes, JHEP 09 (2011) 017 [arXiv:1105.6335] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    K. Skenderis and B.C. van Rees, Real-time gauge/gravity duality: prescription, renormalization and examples, JHEP 05 (2009) 085 [arXiv:0812.2909] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    M.C. Cheng, S.A. Hartnoll and C.A. Keeler, Deformations of Lifshitz holography, JHEP 03 (2010) 062 [arXiv:0912.2784] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    I. Papadimitriou, Holographic renormalization as a canonical transformation, JHEP 11 (2010) 014 [arXiv:1007.4592] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Marco Baggio
    • 1
  • Jan de Boer
    • 1
  • Kristian Holsheimer
    • 1
  1. 1.Institute for Theoretical PhysicsUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations