Integrable structure, W-symmetry and AGT relation

Open Access
Article

Abstract

In these notes we consider integrable structure of the conformal field theory with the algebra of symmetries \( \mathcal{A} = {W_n} \otimes H \), where Wn is W–algebra and H is Heisenberg algebra. We found the system of commuting Integrals of Motion with relatively simple properties. In particular, this system has very simple spectrum and the matrix elements of special primary operators between its eigenstates have nice factorized form coinciding exactly with the contribution of the bifundamental multiplet to the Nekrasov partition function for U(n) gauge theories.

Keywords

Gauge Symmetry Conformal and W Symmetry Integrable Field Theories 

References

  1. [1]
    L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville correlation functions from four-dimensional gauge theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  2. [2]
    N. Wyllard, AN−1 conformal Toda field theory correlation functions from conformal N = 2 SU(N) quiver gauge theories, JHEP 11 (2009) 002 [arXiv:0907.2189] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2004) 831 [hep-th/0206161] [INSPIRE].MathSciNetGoogle Scholar
  4. [4]
    N. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions, hep-th/0306238 [INSPIRE].
  5. [5]
    A. Mironov and A. Morozov, The power of Nekrasov functions, Phys. Lett. B 680 (2009) 188 [arXiv:0908.2190] [INSPIRE].MathSciNetADSGoogle Scholar
  6. [6]
    A. Mironov and A. Morozov, On AGT relation in the case of U(3), Nucl. Phys. B 825 (2010) 1 [arXiv:0908.2569] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    V. Alba and A. Morozov, Check of AGT relation for conformal blocks on sphere, Nucl. Phys. B 840 (2010) 441 [arXiv:0912.2535] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    A. Mironov and A. Morozov, Proving AGT relations in the large-c limit, Phys. Lett. B 682 (2009) 118 [arXiv:0909.3531] [INSPIRE].MathSciNetADSGoogle Scholar
  9. [9]
    A. Mironov, A. Morozov and S. Shakirov, A direct proof of AGT conjecture at β = 1, JHEP 02 (2011) 067 [arXiv:1012.3137] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    V. Fateev and A. Litvinov, On AGT conjecture, JHEP 02 (2010) 014 [arXiv:0912.0504] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    L. Hadasz, Z. Jaskolski and P. Suchanek, Proving the AGT relation for N f = 0, 1, 2 antifundamentals, JHEP 06 (2010) 046 [arXiv:1004.1841] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    V.A. Alba, V.A. Fateev, A.V. Litvinov and G.M. Tarnopolskiy, On combinatorial expansion of the conformal blocks arising from AGT conjecture, Lett. Math. Phys. 98 (2011) 33 [arXiv:1012.1312] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  13. [13]
    D. Lebedev and A. Radul, Generalized internal long waves equations: construction, hamiltonian structure and conservation laws, Commun. Math. Phys. 91 (1983) 543 [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  14. [14]
    A. Degasperis, D. Lebedev, M. Olshanetsky, S. Pakuliak, A. Perelomov and P. Santini, Nonlocal integrable partners to generalized MKdV and two-dimensional Toda lattice equations in the formalism of a dressing method with quantized spectral parameter, Commun. Math. Phys. 141 (1991) 133 [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  15. [15]
    A. Degasperis, D. Lebedev, M. Olshanetsky, S. Pakuliak, A. Perelomov, and P. Santini, Generalized intermediate long-wave hierarchy in zero-curvature representation with noncommutative spectral parameter, J. Math. Phys. 33 (1992) 3783.MathSciNetADSMATHCrossRefGoogle Scholar
  16. [16]
    A. Belavin, A.M. Polyakov and A. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B 241 (1984) 333 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    A. Zamolodchikov, Conformal symmetry in two-dimensions: an explicit recurrence formula for the conformal partial wave amplitude, Commun. Math. Phys. 96 (1984) 419 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    P. Bowcock and G. Watts, Null vectors, three point and four point functions in conformal field theory, Theor. Math. Phys. 98 (1994) 350 [hep-th/9309146] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  19. [19]
    A. Zamolodchikov, Infinite additional symmetries in two-dimensional conformal quantum field theory, Theor. Math. Phys. 65 (1985) 1205 [INSPIRE].MathSciNetCrossRefGoogle Scholar
  20. [20]
    V. Fateev and A. Zamolodchikov, Conformal quantum field theory models in two-dimensions having Z 3 symmetry, Nucl. Phys. B 280 (1987) 644 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    V. Fateev and A. Litvinov, Correlation functions in conformal Toda field theory. I., JHEP 11 (2007) 002 [arXiv:0709.3806] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    R. Flume and R. Poghossian, An algorithm for the microscopic evaluation of the coefficients of the Seiberg-Witten prepotential, Int. J. Mod. Phys. A 18 (2003) 2541 [hep-th/0208176] [INSPIRE].MathSciNetADSGoogle Scholar
  23. [23]
    F. Fucito, J.F. Morales and R. Poghossian, Instantons on quivers and orientifolds, JHEP 10 (2004) 037 [hep-th/0408090] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    S. Shadchin, Cubic curves from instanton counting, JHEP 03 (2006) 046 [hep-th/0511132] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    V. Fateev and S.L. Lukyanov, The models of two-dimensional conformal quantum field theory with Z n symmetry, Int. J. Mod. Phys. A 3 (1988) 507 [INSPIRE].MathSciNetADSGoogle Scholar
  26. [26]
    S.L. Lukyanov, Quantization of the Gel’fand-Dikii brackets, Funct. Anal. Appl. 22 (1988) 255.MathSciNetMATHCrossRefGoogle Scholar
  27. [27]
    G. Watts, Determinant formulae for extended algebras in two-dimensional conformal field theory, Nucl. Phys. B 326 (1989) 648 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    V. Fateev and A. Litvinov, Correlation functions in conformal Toda field theory II, JHEP 01 (2009) 033 [arXiv:0810.3020] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    V. Fateev and A. Litvinov, On differential equation on four-point correlation function in the conformal Toda field theory, JETP Lett. 81 (2005) 594 [hep-th/0505120] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    V. Tarasov and A. Varchenko, Selberg-type integrals associated with SL(3), Letters in Mathematical Physics 65 (2003) 173 [arXiv:math/0302148].MathSciNetADSMATHCrossRefGoogle Scholar
  31. [31]
    S.O. Warnaar, A Selberg integral for the Lie algebra A n, Acta Math. 203 (2009) 269 [arXiv:0708.1193].MathSciNetMATHCrossRefGoogle Scholar
  32. [32]
    B.L. Feigin and D. Fuks, Verma modules over Virasoro algebra, Lectures Notes in Math. 1060 (1984) 230.CrossRefGoogle Scholar
  33. [33]
    A.B. Zamolodchikov and A.B. Zamolodchikov, Structure constants and conformal bootstrap in Liouville field theory, Nucl. Phys. B 477 (1996) 577 [hep-th/9506136] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    I.M. Gel’fand and L.A. Dikii, Fractional powers of operators and Hamiltonian systems, Funct. Anal. Appl. 10 (1976) 259.CrossRefGoogle Scholar
  35. [35]
    V. Drinfeld and V. Sokolov, Lie algebra and KdV like equations, in Modern problems in mathematics, VINITI, Moscow Russia (1984).Google Scholar
  36. [36]
    V. Fateev and S.L. Lukyanov, Poisson Lie groups and classical W algebras, Int. J. Mod. Phys. A 7 (1992) 853 [INSPIRE].MathSciNetADSGoogle Scholar
  37. [37]
    M. Bershtein, V. Fateev and A. Litvinov, Parafermionic polynomials, Selberg integrals and three-point correlation function in parafermionic Liouville field theory, Nucl. Phys. B 847 (2011) 413 [arXiv:1011.4090] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    H. Awata, B. Feigin, A. Hoshino, M. Kanai, J. Shiraishi, et al., Notes on Ding-Iohara algebra and AGT conjecture, arXiv:1106.4088 [INSPIRE].
  39. [39]
    V. Belavin and B. Feigin, Super Liouville conformal blocks from N = 2 SU(2) quiver gauge theories, JHEP 07 (2011) 079 [arXiv:1105.5800] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    A. Belavin, V. Belavin and M. Bershtein, Instantons and 2d superconformal field theory, JHEP 09 (2011) 117 [arXiv:1106.4001] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    G. Bonelli, K. Maruyoshi and A. Tanzini, Instantons on ALE spaces and super Liouville conformal field theories, Journal of High Energy Physics 8 (2011) 56 [arXiv:1106.2505].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    G. Bonelli, K. Maruyoshi and A. Tanzini, Gauge theories on ALE space and super Liouville correlation functions, arXiv:1107.4609.
  43. [43]
    K.W.J. Kadell, The Selberg-Jack symmetric functions, Adv. Math. 130 (1997) 33.MathSciNetMATHCrossRefGoogle Scholar
  44. [44]
    A. Okounkov, (Shifted) Macdonald polynomials: q-integral representation and combinatorial formula, Compositio Math. 112 (1998) 147, [q-alg/9605013].MathSciNetMATHCrossRefGoogle Scholar
  45. [45]
    P. Baseilhac and V.A. Fateev, Expectation values of local fields for a two-parameter family of integrable models and related perturbed conformal field theories, Nucl. Phys. B 532 (1998) 567 [hep-th/9906010].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    R.P. Stanley, Some combinatorial properties of Jack symmetric functions, Adv. Math. 77 (1989) 76.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsMoscow RegionRussia
  2. 2.Laboratoire Charles Coulomb, L2C, UMR 5221Université Montpellier IIMontpellierFrance
  3. 3.Kavli Institute for Theoretical PhysicsUniversity of CaliforniaSanta BarbaraU.S.A.

Personalised recommendations