Lattice QCD determination of m b , f B and f Bs with twisted mass Wilson fermions

  • P. Dimopoulos
  • R. Frezzotti
  • G. Herdoiza
  • V. Lubicz
  • C. Michael
  • D. Palao
  • G. C. Rossi
  • F. Sanfilippo
  • A. Shindler
  • S. Simula
  • C. TarantinoEmail author
  • M. Wagner
Open Access


We present a lattice QCD determination of the b quark mass and of the B and B s decay constants, performed with N f = 2 twisted mass Wilson fermions, by simulating at four values of the lattice spacing. In order to study the b quark on the lattice, two methods are adopted in the present work, respectively based on suitable ratios with exactly known static limit and on the interpolation between relativistic data, evaluated in the charm mass region, and the static point, obtained by simulating the HQET on the lattice. The two methods provide results in good agreement. For the b quark mass in the \( \overline {\text{MS}} \) scheme and for the decay constants we obtain \( {\overline m_b}\left( {{{\overline m }_b}} \right) \) = 4.29(14) GeV, f B = 195(12) MeV, f Bs = 232(10) MeV and f Bs /f B = 1.19(5). As a byproduct of the analysis we also obtain the results for the f D and f Ds decay constants: f D = 212(8) MeV, f Ds = 248(6) MeV and f Ds /f D = 1.17(5).


Lattice QCD Quark Masses and SM Parameters B-Physics Heavy Quark Physics 


  1. [1]
    UTfit collaboration,
  2. [2]
    UTfit collaboration, M. Bona et al., An improved standard model prediction of BR(Bτν) and its implications for new physics, Phys. Lett. B 687 (2010) 61 [arXiv:0908.3470] [INSPIRE].ADSGoogle Scholar
  3. [3]
    C. Aubin, Lattice studies of hadrons with heavy flavors, PoS(LAT2009)007 [arXiv:0909.2686] [INSPIRE].
  4. [4]
    ETM collaboration, B. Blossier et al., A Proposal for B-physics on current lattices, JHEP 04 (2010) 049 [arXiv:0909.3187] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    ETM collaboration, B. Blossier et al., f (B) and f (B)(s) with maximally twisted Wilson fermions, PoS(LAT2009)151 [arXiv:0911.3757] [INSPIRE].
  6. [6]
    C. Allton, C.T. Sachrajda, V. Lubicz, L. Maiani and G. Martinelli, A lattice computation of the decay constant of the B meson, Nucl. Phys. B 349 (1991) 598 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    ETM collaboration, M. Constantinou et al., Non-perturbative renormalization of quark bilinear operators with N f = 2 (tmQCD) Wilson fermions and the tree-level improved gauge action, JHEP 08 (2010) 068 [arXiv:1004.1115] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    ETM collaboration, B. Blossier et al., Pseudoscalar decay constants of kaon and D-mesons from N f = 2 twisted mass lattice QCD, JHEP 07 (2009) 043 [arXiv:0904.0954] [INSPIRE].Google Scholar
  9. [9]
    P. Weisz, Continuum limit improved lattice action for pure Yang-Mills theory. 1, Nucl. Phys. B 212 (1983) 1 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    Alpha collaboration, R. Frezzotti et al., Lattice QCD with a chirally twisted mass term, JHEP 08 (2001) 058 [hep-lat/0101001] [INSPIRE].Google Scholar
  11. [11]
    ETM collaboration, R. Baron et al., Light meson physics from maximally twisted mass lattice QCD, JHEP 08 (2010) 097 [arXiv:0911.5061] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    ETM collaboration, P. Boucaud et al., Dynamical twisted mass fermions with light quarks, Phys. Lett. B 650 (2007) 304 [hep-lat/0701012] [INSPIRE].ADSGoogle Scholar
  13. [13]
    ETM collaboration, P. Boucaud et al., Dynamical twisted mass fermions with light quarks: simulation and analysis details, Comput. Phys. Commun. 179 (2008) 695 [arXiv:0803.0224] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    ETM collaboration, C. Urbach, Lattice QCD with two light Wilson quarks and maximally twisted mass, PoS(LATTICE 2007)022 [arXiv:0710.1517] [INSPIRE].
  15. [15]
    ETM collaboration, P. Dimopoulos et al., Scaling and chiral extrapolation of pion mass and decay constant with maximally twisted mass QCD, PoS(LATTICE 2008)103 [arXiv:0810.2873] [INSPIRE].
  16. [16]
    R. Frezzotti and G. Rossi, Chirally improving Wilson fermions. 1. O(a) improvement, JHEP 08 (2004) 007 [hep-lat/0306014] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    R. Frezzotti and G. Rossi, Chirally improving Wilson fermions. II. Four-quark operators, JHEP 10 (2004) 070 [hep-lat/0407002] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    ETM collaboration, B. Blossier et al., Average up/down, strange and charm quark masses with N f = 2 twisted mass lattice QCD, Phys. Rev. D 82 (2010) 114513 [arXiv:1010.3659] [INSPIRE].ADSGoogle Scholar
  19. [19]
    K. Chetyrkin, Quark mass anomalous dimension to O \( \left( {\alpha_s^4} \right) \), Phys. Lett. B 404 (1997) 161 [hep-ph/9703278] [INSPIRE].ADSGoogle Scholar
  20. [20]
    J. Vermaseren, S. Larin and T. van Ritbergen, The four loop quark mass anomalous dimension and the invariant quark mass, Phys. Lett. B 405 (1997) 327 [hep-ph/9703284] [INSPIRE].ADSGoogle Scholar
  21. [21]
    K. Chetyrkin and A. Retey, Renormalization and running of quark mass and field in the regularization invariant and MS-bar schemes at three loops and four loops, Nucl. Phys. B 583 (2000) 3 [hep-ph/9910332] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    N. Gray, D.J. Broadhurst, W. Grafe and K. Schilcher, Three loop relation of quark (modified) MS and pole masses, Z. Phys. C 48 (1990) 673 [INSPIRE].ADSGoogle Scholar
  23. [23]
    D.J. Broadhurst, N. Gray and K. Schilcher, Gauge invariant on-shell Z(2) in QED, QCD and the effective field theory of a static quark, Z. Phys. C 52 (1991) 111 [INSPIRE].MathSciNetADSGoogle Scholar
  24. [24]
    K. Chetyrkin and M. Steinhauser, Short distance mass of a heavy quark at order \( \alpha_s^3 \), Phys. Rev. Lett. 83 (1999) 4001 [hep-ph/9907509] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    K. Melnikov and T.v. Ritbergen, The three loop relation between the MS-bar and the pole quark masses, Phys. Lett. B 482 (2000) 99 [hep-ph/9912391] [INSPIRE].ADSGoogle Scholar
  26. [26]
    K. Chetyrkin and A. Grozin, Three loop anomalous dimension of the heavy light quark current in HQET, Nucl. Phys. B 666 (2003) 289 [hep-ph/0303113] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    J. Goity, Chiral perturbation theory for SU(3) breaking in heavy meson systems, Phys. Rev. D 46 (1992) 3929 [hep-ph/9206230] [INSPIRE].ADSGoogle Scholar
  28. [28]
    B. Grinstein, E.E. Jenkins, A.V. Manohar, M.J. Savage and M.B. Wise, Chiral perturbation theory for f D(s) /f D and B B(s) /B B , Nucl. Phys. B 380 (1992) 369 [hep-ph/9204207] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    S.R. Sharpe and Y. Zhang, Quenched chiral perturbation theory for heavy-light mesons, Phys. Rev. D 53 (1996) 5125 [hep-lat/9510037] [INSPIRE].ADSGoogle Scholar
  30. [30]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].ADSGoogle Scholar
  31. [31]
    H. Ohki, H. Matsufuru and T. Onogi, Determination of B*Bπ coupling in unquenched QCD, Phys. Rev. D 77 (2008) 094509 [arXiv:0802.1563] [INSPIRE].ADSGoogle Scholar
  32. [32]
    D. Becirevic, B. Blossier, E. Chang and B. Haas, g(B*Bπ)-coupling in the static heavy quark limit, Phys. Lett. B 679 (2009) 231 [arXiv:0905.3355] [INSPIRE].ADSGoogle Scholar
  33. [33]
    ETM collaboration, K. Jansen et al., The static-light meson spectrum from twisted mass lattice QCD, JHEP 12 (2008) 058 [arXiv:0810.1843] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    ETM collaboration, C. Michael et al., The continuum limit of the static-light meson spectrum, JHEP 08 (2010) 009 [arXiv:1004.4235] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    M. Della Morte, A. Shindler and R. Sommer, On lattice actions for static quarks, JHEP 08 (2005) 051 [hep-lat/0506008] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    A. Hasenfratz and F. Knechtli, Flavor symmetry and the static potential with hypercubic blocking, Phys. Rev. D 64 (2001) 034504 [hep-lat/0103029] [INSPIRE].ADSGoogle Scholar
  37. [37]
    ALPHA collaboration, M. Della Morte et al., Lattice HQET with exponentially improved statistical precision, Phys. Lett. B 581 (2004) 93 [Erratum ibid. B 612 (2005) 313-314] [hep-lat/0307021] [INSPIRE].Google Scholar
  38. [38]
    B. Blossier, Lattice renormalisation of O(a) improved heavy-light operators: an addendum, Phys. Rev. D 84 (2011) 097501 [arXiv:1106.2132] [INSPIRE].ADSGoogle Scholar
  39. [39]
    HPQCD collaboration, E. Gamiz et al., Neutral B meson mixing in unquenched lattice QCD, Phys. Rev. D 80 (2009) 014503 [arXiv:0902.1815] [INSPIRE].ADSGoogle Scholar
  40. [40]
    C. Albertus et al., Neutral B-meson mixing from unquenched lattice QCD with domain-wall light quarks and static b-quarks, Phys. Rev. D 82 (2010) 014505 [arXiv:1001.2023] [INSPIRE].ADSGoogle Scholar
  41. [41]
    R. Baron et al., Light hadrons from lattice QCD with light (u, d), strange and charm dynamical quarks, JHEP 06 (2010) 111 [arXiv:1004.5284] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    ETM collaboration, R. Baron et al., Computing K and D meson masses with N f = 2 + 1 + 1 twisted mass lattice QCD, Comput. Phys. Commun. 182 (2011) 299 [arXiv:1005.2042] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  43. [43]
    M. Gremm, A. Kapustin, Z. Ligeti and M.B. Wise, Implications of the BX lepton anti-lepton-neutrino lepton spectrum for heavy quark theory, Phys. Rev. Lett. 77 (1996) 20 [hep-ph/9603314] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    C. Davies, Standard Model flavor physics on the lattice, plenary talk at the XXIX International Symposium on Lattice Field Theory (LATTICE2011), July 10-16, Squaw Valley, Lake Tahoe, California, U.S.A. (2011),

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • P. Dimopoulos
    • 1
  • R. Frezzotti
    • 1
  • G. Herdoiza
    • 2
  • V. Lubicz
    • 3
    • 4
  • C. Michael
    • 5
  • D. Palao
    • 1
  • G. C. Rossi
    • 1
  • F. Sanfilippo
    • 6
  • A. Shindler
    • 7
  • S. Simula
    • 4
  • C. Tarantino
    • 3
    • 4
    Email author
  • M. Wagner
    • 7
  1. 1.Dip. di Fisica, Università di Roma Tor Vergata and INFN, Sezione di Roma Tor VergataRomaItaly
  2. 2.Departamento de Física Teórica and Instituto de Física Teórica UAM/CSICUniversidad Autónoma de MadridMadridSpain
  3. 3.Dip. di FisicaUniversità Roma TreRomaItaly
  4. 4.INFN, Sezione di Roma TreRomaItaly
  5. 5.Theoretical Physics Division, Dept. of Mathematical SciencesUniversity of LiverpoolLiverpoolUK
  6. 6.Laboratoire de Physique Théorique (Bat. 210)Université Paris Sud, Centre d’OrsayOrsay-CedexFrance
  7. 7.Humboldt Universität zu BerlinBerlinGermany

Personalised recommendations