The QCD deconfinement transition for heavy quarks and all baryon chemical potentials

  • Michael Fromm
  • Jens LangelageEmail author
  • Stefano Lottini
  • Owe Philipsen


Using combined strong coupling and hopping parameter expansions, we derive an effective three-dimensional theory from thermal lattice QCD with heavy Wilson quarks. The theory depends on traced Polyakov loops only and correctly reflects the centre symmetry of the pure gauge sector as well as its breaking by finite mass quarks. It is valid up to certain orders in the lattice gauge coupling and hopping parameter, which can be systematically improved. To its current order it is controlled for lattices up to N τ ~ 6 at finite temperature. For nonzero quark chemical potentials, the effective theory has a fermionic sign problem which is mild enough to carry out simulations up to large chemical potentials. Moreover, by going to a flux representation of the partition function, the sign problem can be solved. As an application, we determine the deconfinement transition and its critical end point as a function of quark mass and all chemical potentials.


Lattice QCD Strong Coupling Expansion Thermal Field Theory Heavy Quark Physics 


  1. [1]
    O. Philipsen, Lattice QCD at non-zero temperature and baryon density, arXiv:1009.4089 [INSPIRE].
  2. [2]
    K. Fukushima, Phase diagram from PNJL models, PoS(CPOD 2009)016 [INSPIRE].
  3. [3]
    W. Weise, Chiral symmetry in strongly interacting matter: from nuclear matter to phases of QCD, Prog. Theor. Phys. Suppl. 186 (2010) 390 [arXiv:1009.6201] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    B.-J. Schaefer, Fluctuations and the QCD phase diagram, arXiv:1102.2772 [INSPIRE].
  5. [5]
    J. Luecker and C.S. Fischer, Two-flavor QCD at finite temperature and chemical potential in a functional approach, arXiv:1111.0180 [INSPIRE].
  6. [6]
    L.M. Haas, J. Braun and J.M. Pawlowski, On the QCD phase diagram at finite chemical potential, AIP Conf. Proc. 1343 (2011) 459 [arXiv:1012.4735] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    J. Langelage, S. Lottini and O. Philipsen, Centre symmetric 3d effective actions for thermal SU(N) Yang-Mills from strong coupling series, JHEP 02 (2011) 057 [Erratum ibid. 1107 (2011) 014] [arXiv:1010.0951] [INSPIRE].
  8. [8]
    R. De Pietri, A. Feo, E. Seiler and I.-O. Stamatescu, A model for QCD at high density and large quark mass, Phys. Rev. D 76 (2007) 114501 [arXiv:0705.3420] [INSPIRE].ADSGoogle Scholar
  9. [9]
    I. Montvay and G. Münster, Quantum fields on a lattice, Cambridge monographs on mathematical physics, Cambridge University Press, Cambridge U.K. (1994).Google Scholar
  10. [10]
    S. Necco and R. Sommer, The N f = 0 heavy quark potential from short to intermediate distances, Nucl. Phys. B 622 (2002) 328 [hep-lat/0108008] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    J. Langelage and O. Philipsen, The deconfinement transition of finite density QCD with heavy quarks from strong coupling series, JHEP 01 (2010) 089 [arXiv:0911.2577] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    J. Langelage and O. Philipsen, The pressure of strong coupling lattice QCD with heavy quarks, the hadron resonance gas model and the large-N limit, JHEP 04 (2010) 055 [arXiv:1002.1507] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    P. Hasenfratz and F. Karsch, Chemical potential on the lattice, Phys. Lett. B 125 (1983) 308 [INSPIRE].ADSGoogle Scholar
  14. [14]
    M.G. Alford, S. Chandrasekharan, J. Cox and U. Wiese, Solution of the complex action problem in the Potts model for dense QCD, Nucl. Phys. B 602 (2001) 61 [hep-lat/0101012] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    J. Condella and C.E. Detar, Potts flux tube model at nonzero chemical potential, Phys. Rev. D 61 (2000) 074023 [hep-lat/9910028] [INSPIRE].ADSGoogle Scholar
  16. [16]
    C. Gattringer, Flux representation of an effective Polyakov loop model for QCD thermodynamics, Nucl. Phys. B 850 (2011) 242 [arXiv:1104.2503] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    K. Eriksson, N. Svartholm and B. Skagerstam, On invariant group integrals in lattice QCD, J. Math. Phys. 22 (1981) 2276 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    J. Carlsson, Integrals over SU(N), arXiv:0802.3409 [INSPIRE].
  19. [19]
    N. Prokof’ev and B. Svistunov, Worm algorithms for classical statistical models, Phys. Rev. Lett. 87 (2001) 160601 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    C. Gabriel, Dynamical properties of the worm algorithm,, Diploma thesis, Graz Austria (2002).
  21. [21]
    S. Kim, P. de Forcrand, S. Kratochvila and T. Takaishi, The 3-state Potts model as a heavy quark finite density laboratory, PoS(LAT2005)166 [hep-lat/0510069] [INSPIRE].
  22. [22]
    C. Alexandrou et al., The deconfinement phase transition in one flavor QCD, Phys. Rev. D 60 (1999) 034504 [hep-lat/9811028] [INSPIRE].MathSciNetADSGoogle Scholar
  23. [23]
    WHOT-QCD collaboration, H. Saito et al., Phase structure of finite temperature QCD in the heavy quark region, Phys. Rev. D 84 (2011) 054502 [arXiv:1106.0974] [INSPIRE].ADSGoogle Scholar
  24. [24]
    Y. Deng and H.W. Blöte, Simultaneous analysis of several models in the three-dimensional Ising universality class, Phys. Rev. E 68 (2003) 036125 [INSPIRE].ADSGoogle Scholar
  25. [25]
    F. Green and F. Karsch, Mean field analysis of SU(N) deconfining transitions in the presence of dynamical quarks, Nucl. Phys. B 238 (1984) 297 [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    N. Kawamoto and J. Smit, Effective Lagrangian and dynamical symmetry breaking in strongly coupled lattice QCD, Nucl. Phys. B 192 (1981) 100 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    P. de Forcrand, S. Kim and O. Philipsen, A QCD chiral critical point at small chemical potential: is it there or not?, PoS(LATTICE 2007)178 [arXiv:0711.0262] [INSPIRE].
  28. [28]
    P. de Forcrand and O. Philipsen, The chiral critical line of N f = 2 + 1 QCD at zero and non-zero baryon density, JHEP 01 (2007) 077 [hep-lat/0607017] [INSPIRE].CrossRefGoogle Scholar
  29. [29]
    P. de Forcrand and O. Philipsen, The chiral critical point of N f = 3 QCD at finite density to the order (μ/T)4, JHEP 11 (2008) 012 [arXiv:0808.1096] [INSPIRE].CrossRefGoogle Scholar
  30. [30]
    P. de Forcrand and O. Philipsen, Constraining the QCD phase diagram by tricritical lines at imaginary chemical potential, Phys. Rev. Lett. 105 (2010) 152001 [arXiv:1004.3144] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    A. Roberge and N. Weiss, Gauge theories with imaginary chemical potential and the phases of QCD, Nucl. Phys. B 275 (1986) 734 [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    C. Wozar, T. Kaestner, A. Wipf and T. Heinzl, Inverse Monte-Carlo determination of effective lattice models for SU(3) Yang-Mills theory at finite temperature, Phys. Rev. D 76 (2007) 085004 [arXiv:0704.2570] [INSPIRE].ADSGoogle Scholar
  33. [33]
    P. de Forcrand, A. Kurkela and A. Vuorinen, Center-symmetric effective theory for high-temperature SU(2) Yang-Mills theory, Phys. Rev. D 77 (2008) 125014 [arXiv:0801.1566] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Michael Fromm
    • 1
  • Jens Langelage
    • 1
    Email author
  • Stefano Lottini
    • 1
  • Owe Philipsen
    • 1
  1. 1.Institut für Theoretische Physik, Goethe-Universität FrankfurtFrankfurt am MainGermany

Personalised recommendations