Advertisement

Confronting electron-positron annihilation into hadrons with QCD: an operator product expansion analysis

  • S. Bodenstein
  • C. A. Dominguez
  • S. I. Eidelman
  • H. Spiesberger
  • K. Schilcher
Article

Abstract

Experimental data on the total cross section of e + e annihilation into hadrons are confronted with QCD and the operator product expansion using finite energy sum rules. Specifically, the power corrections in the operator product expansion, i.e. the vacuum condensates, of dimension d = 2, 4 and 6 are determined using recent isospin \( I = 0 + {1} \) data sets. Reasonably stable results are obtained which are compatible within errors with values from τ -decay. However, the rather large data uncertainties, together with the current value of the strong coupling constant, lead to very large errors in the condensates. It also appears that the separation into isovector and isoscalar pieces introduces additional uncertainties and errors. In contrast, the high precision τ -decay data of the ALEPH collaboration in the vector channel allows for a more precise determination of the condensates. This is in spite of QCD asymptotics not quite been reached at the end of the τ spectrum. We point out that isospin violation is negligible in the integrated cross sections, unlike the case of individual channels.

Keywords

QCD Phenomenology 

References

  1. [1]
    M.A. Shifman, A. Vainshtein and V.I. Zakharov, QCD and resonance physics. Sum rules, Nucl. Phys. B 147 (1979) 385 [INSPIRE].ADSGoogle Scholar
  2. [2]
    P. Colangelo, and A. Khodjamirian, QCD sum rules: a modern perspective, in At the frontier of particle physics. Handbook of QCD volume 3, M. Shifman ed., World Scientific, Singapore (2001).Google Scholar
  3. [3]
    K. Chetyrkin, S. Narison and V.I. Zakharov, Short distance tachyonic gluon mass and 1/Q2 corrections, Nucl. Phys. B 550 (1999) 353 [hep-ph/9811275] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    T. Lee, Renormalon subtraction from the average plaquette and the gluon condensate, Phys. Rev. D 82 (2010) 114021 [arXiv:1003.0231] [INSPIRE].ADSGoogle Scholar
  5. [5]
    C. Dominguez and K. Schilcher, Is there evidence for dimension two corrections in QCD two point functions?, Phys. Rev. D 61 (2000) 114020 [hep-ph/9903483] [INSPIRE].ADSGoogle Scholar
  6. [6]
    C.A. Dominguez and K. Schilcher, QCD vacuum condensates from tau-lepton decay data, JHEP 01 (2007) 093 [hep-ph/0611347] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    C. Dominguez, N. Nasrallah and K. Schilcher, Confronting QCD with the experimental hadronic spectral functions from tau-decay, Phys. Rev. D 80 (2009) 054014 [arXiv:0903.3463] [INSPIRE].ADSGoogle Scholar
  8. [8]
    A. Almasy, K. Schilcher and H. Spiesberger, Determination of QCD condensates from τ -decay data, Eur. Phys. J. C 55 (2008) 237 [arXiv:0802.0980] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    ALEPH collaboration, S. Schael et al., Branching ratios and spectral functions of τ decays: final ALEPH measurements and physics implications, Phys. Rept. 421 (2005) 191 [hep-ex/0506072] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    S. Eidelman, L. Kurdadze and A. Vainshtein, e + e annihilation into hadrons below 2 GeV. Test of QCD predictions, Phys. Lett. B 82 (1979) 278 [INSPIRE].ADSGoogle Scholar
  11. [11]
    M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the hadronic contributions to the muon g − 2 and to \( \alpha (M(z)) \), Eur. Phys. J. C 71 (2011) 1515 [arXiv:1010.4180] [INSPIRE].ADSGoogle Scholar
  12. [12]
    F. Jegerlehner and A. Nyffeler, The muon g − 2, Phys. Rept. 477 (2009) 1 [arXiv:0902.3360] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    R. Alemany, M. Davier and A. Hocker, Improved determination of the hadronic contribution to the muon (g − 2) and to \( \alpha (M(z)) \) using new data from hadronic τ decays, Eur. Phys. J. C 2 (1998) 123 [hep-ph/9703220] [INSPIRE].ADSGoogle Scholar
  14. [14]
    F. Jegerlehner and R. Szafron, ρ 0 –γ mixing in the neutral channel pion form factor \( F_{\pi }^e \) and its role in comparing e + e with τ spectral functions, Eur. Phys. J. C 71 (2011) 1632 [arXiv:1101.2872] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    S. Gorishnii, A. Kataev and S. Larin, The \( {\text{O}}\left( {\alpha_s^3 } \right) \) corrections to \( {\sigma_{{tot}}}({e^{ + }}{e^{ - }} \to hadrons) \) and \( \Gamma ({\tau^{ - }} \to \tau - neutrino + hadrons) \) in QCD, Phys. Lett. B 259 (1991) 144 [INSPIRE].
  16. [16]
    L.R. Surguladze and M.A. Samuel, Total hadronic cross-section in e + e annihilation at the four loop level of perturbative QCD, Phys. Rev. Lett. 66 (1991) 560 [Erratum ibid. 66 (1991) 2416] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    K. Chetyrkin, A. Kataev and F. Tkachov, Higher order corrections to \( {\sigma_{\text{tot}}}({e^{ + }} {e^{ - }} \to hadrons) \) in quantum chromodynamics, Phys. Lett. B 85 (1979) 277 [INSPIRE].ADSGoogle Scholar
  18. [18]
    M. Dine and J. Sapirstein, Higher order QCD corrections in e + e annihilation, Phys. Rev. Lett. 43 (1979) 668 [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    W. Celmaster and R.J. Gonsalves, An analytic calculation of higher order quantum chromodynamic corrections in e + e annihilation, Phys. Rev. Lett. 44 (1980) 560 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    P. Baikov, K. Chetyrkin and J.H. Kuhn, Order \( \alpha_s^{{4}} \) QCD corrections to Z and τ decays, Phys. Rev. Lett. 101 (2008) 012002 [arXiv:0801.1821] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    K. Chetyrkin, B.A. Kniehl and M. Steinhauser, Strong coupling constant with flavor thresholds at four loops in the MS scheme, Phys. Rev. Lett. 79 (1997) 2184 [hep-ph/9706430] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    G. Launer, Variation on finite energy sum rules: vacuum matrix elements, Z. Phys. C 32 (1986) 557 [INSPIRE].ADSGoogle Scholar
  23. [23]
    A. Pich, Tau decay determination of the QCD coupling, arXiv:1107.1123 [INSPIRE].
  24. [24]
    S. Bethke et al., Workshop on precision measurements of alphas, arXiv:1110.0016 [INSPIRE].
  25. [25]
    CMD2 collaboration, R. Akhmetshin et al., Study of the processes \( {e^{ + }}{e^{ - }} \to \eta \gamma, {\pi_0}\gamma \to 3\gamma \) in the c.m. energy range 600 MeV to 1380 MeV at CMD-2, Phys. Lett. B 605 (2005) 26 [hep-ex/0409030] [INSPIRE].ADSGoogle Scholar
  26. [26]
    B. Aubert et al., Precise measurement of the \( {e^{ + }} {e^{ - }} \to {\pi^{ + }}{\pi^{ - }}(\gamma ) \) cross section with the Initial State Radiation method at BABAR, Phys. Rev. Lett. 103 (2009) 231801 [arXiv:0908.3589] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    BABAR collaboration, B. Aubert et al., Study of \( {e^{ + }} {e^{ - }} \to {\pi^{ + }}{\pi^{ - }}{\pi^0} \) process using initial state radiation with BaBar, Phys. Rev. D 70 (2004) 072004 [hep-ex/0408078] [INSPIRE].ADSGoogle Scholar
  28. [28]
    R. Akhmetshin et al., Study of \( \phi \to {\pi^{ + }}{\pi^{ - }}{\pi^0} \) with CMD-2 detector, Phys. Lett. B 642 (2006) 203 [INSPIRE].ADSGoogle Scholar
  29. [29]
    M. Achasov et al., Study of the process \( {e^{ + }} {e^{ - }} \to {\pi^{ + }}{\pi^{ - }} {\pi^0} \) in the energy region s1/2 from 0.98 GeV to 1.38 GeV, Phys. Rev. D 66 (2002) 032001 [hep-ex/0201040] [INSPIRE].ADSGoogle Scholar
  30. [30]
    M. Achasov et al., Study of the process \( {e^{ + }} {e^{ - }} \to {\pi^{ + }}{\pi^{ - }}{\pi^0} \) in the energy region s1/2 below 0.98 GeV, Phys. Rev. D 68 (2003) 052006 [hep-ex/0305049] [INSPIRE].ADSGoogle Scholar
  31. [31]
    BABAR collaboration, B. Aubert et al., The \( {e^{ + }} {e^{ - }} \to {\pi^{ + }}{\pi^{ - }}{\pi^{ + }}{\pi^{ - }},{K^{ + }}{K^{ - }}{\pi^{ + }}{\pi^{ - }} \) and \( {K^{ + }}{K^{ - }}{K^{ + }}{K^{ - }} \) cross sections at center-of-mass energies 0.5 GeV–4.5 GeV measured with initial-state radiation, Phys. Rev. D 71 (2005) 052001 [hep-ex/0502025] [INSPIRE].ADSGoogle Scholar
  32. [32]
    V. Druzhinin, Study of e + e annihilation at low energies, in the proceedings of the 23rd International Symposium on Lepton-Photon Interactions at High Energy (LP 07), August 13–18, Daegu, Korea (2007), arXiv:0710.3455 [INSPIRE].
  33. [33]
    M.N. Achasov et al., Study of process \( {e^{ + }}{e^{ - }} \to {\pi^{ + }}{\pi^{ - }}{\pi^0}{\pi^0} \) at energies \( \sqrt {\text{s}} = {1}GeV \) with the spherical neutral detector, J. Exp. Theor. Phys. 109 (2009) 379 [Zh. Eksp. Teor. Fiz. 136 (2009) 442] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    BABAR collaboration, B. Aubert et al., The \( {e^{ + }}{e^{ - }} \to 2({\pi^{ + }}{\pi^{ - }}){\pi^0},2({\pi^{ + }}{\pi^{ - }})\eta \), \( {K^{ + }}{K^{ - }}{\pi^{ + }}{\pi^{ - }}{\pi^0} \) and \( {K^{ + }}{K^{ - }}{\pi^{ + }}{\pi^{ - }}\eta \) cross sections measured with initial-state radiation, Phys. Rev. D 76 (2007) 092005 [Erratum ibid. D 77 (2008) 119902] [arXiv:0708.2461] [INSPIRE].ADSGoogle Scholar
  35. [35]
    BABAR collaboration, B. Aubert et al., The \( {e^{ + }}{e^{ - }} \to 3({\pi^{ + }}{\pi^{ - }}) \), \( {2}({\pi^{ + }}{\pi^{ - }}{\pi^0}) \) and \( {{\text{K}}^{ + }}{{\text{K}}^{ - }}{2}({\pi^{ + }}{\pi^{ - }}) \) cross sections at center-of-mass energies from production threshold to 4.5 GeV measured with initial-state radiation, Phys. Rev. D 73 (2006) 052003 [hep-ex/0602006] [INSPIRE].ADSGoogle Scholar
  36. [36]
    CMD-2 collaboration, R. Akhmetshin et al., Study of the process \( {{\text{e}}^{ + }}{{\text{e}}^{ - }} \to \omega {\pi^0} \to {\pi^0}{\pi^0}\gamma \) in c.m. energy range 920 MeV–1380 MeV at CMD-2, Phys. Lett. B 562 (2003) 173 [hep-ex/0304009] [INSPIRE].ADSGoogle Scholar
  37. [37]
    CMD-2 collaboration, R. Akhmetshin et al., Measurement of \( {e^{ + }}{e^{ - }} \to \phi \to {K^{ + }}{K^{ - }} \) cross section with the CMD-2 detector at VEPP-2M collider, Phys. Lett. B 669 (2008) 217 [arXiv:0804.0178] [INSPIRE].ADSGoogle Scholar
  38. [38]
    M. Achasov, K. Beloborodov, A. Berdyugin, A. Bogdanchikov, A. Bukin, et al., Measurement of the \( {e^{ + }}{e^{ - }} \to {K^{ + }}{K^{ - }} \) process cross-section in the energy range \( \sqrt {\text{s}} = {1}.0{4}--{1}.{38}\,\,GeV \) with the SND detector in the experiment at VEPP-2M e + e collider, Phys. Rev. D 76 (2007) 072012 [arXiv:0707.2279] [INSPIRE].ADSGoogle Scholar
  39. [39]
    D. Bisello et al., Study of the reaction \( {e^{ + }}{e^{ - }} \to {K^{ + }}{K^{ - }} \) in the energy range \( {135}0 \leqslant \sqrt {\text{S}} \leqslant {24}00 \) MeV, Z. Phys. C 39 (1988) 13 [INSPIRE].ADSGoogle Scholar
  40. [40]
    M. Achasov et al., Measurements of the parameters of the phi(1020) resonance through studies of the processes \( {e^{ + }}{e^{ - }} \to {K^{ + }}{K^{ - }} \) , KSKL and \( {\pi^{ + }}{\pi^{ - }}{\pi^0} \), Phys. Rev. D 63 (2001) 072002 [INSPIRE].ADSGoogle Scholar
  41. [41]
    M.N. Achasov et al., Experimental study of the reaction \( {e^{ + }}{e^{ - }} \to {K_S}{K_L} \) in the energy range \( \sqrt {s} = 1.04\,\,\,GeV \) divided by 1.38 GeV, J. Exp. Theor. Phys. 103 (2006) 720 [Zh. Eksp. Teor. Fiz. 103 (2006) 831] [hep-ex/0606057] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    F. Mane et al., Study of the reaction \( {e^{ + }}{e^{ - }} \to K_S^0 K_L^0 \) in the total energy range 1.4 GeV to 2.18 GeV and interpretation of the K + and K 0 form-factors, Phys. Lett. B 99 (1981) 261 [INSPIRE]ADSGoogle Scholar
  43. [43]
    BaBar collaboration, B. Aubert et al., Measurements of \( {e^{ + }}{e^{ - }} \to {K^{ + }}{K^{ - }}\eta \) , \( {K^{ + }}{K^{ - }}{\pi^0} \) and \( K_s^0{K^{\pm }}{\pi^{ \mp }} \) cross- sections using initial state radiation events, Phys. Rev. D 77 (2008) 092002 [arXiv:0710.4451] [INSPIRE].ADSGoogle Scholar
  44. [44]
    BABAR collaboration, B. Aubert et al., A study of \( {e^{ + }} {e^{ - }} \to p\overline p \) using initial state radiation with BABAR, Phys. Rev. D 73 (2006) 012005 [hep-ex/0512023] [INSPIRE].ADSGoogle Scholar
  45. [45]
    A. Antonelli et al., The first measurement of the neutron electromagnetic form-factors in the timelike region, Nucl. Phys. B 517 (1998) 3 [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    BES collaboration, J. Bai et al., Measurements of the cross-section for e + e hadrons at center-of-mass energies from 2 GeV to 5 GeV, Phys. Rev. Lett. 88 (2002) 101802 [hep-ex/0102003] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    BES collaboration, M. Ablikim et al., R value measurements for e + e annihilation at 2.60 GeV, 3.07 GeV and 3.65 GeV, Phys. Lett. B 677 (2009) 239 [arXiv:0903.0900] [INSPIRE].ADSGoogle Scholar
  48. [48]
    M. Davier, S. Eidelman, A. Hocker and Z. Zhang, Confronting spectral functions from e + e annihilation and tau decays: consequences for the muon magnetic moment, Eur. Phys. J. C 27 (2003) 497 [hep-ph/0208177] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    CMD-2 collaboration, R. Akhmetshin et al., Reanalysis of hadronic cross-section measurements at CMD-2, Phys. Lett. B 578 (2004) 285 [hep-ex/0308008] [INSPIRE].ADSGoogle Scholar
  50. [50]
    BABAR collaboration, B. Aubert et al., The \( {e^{ + }}{e^{ - }} \to {K^{ + }}{K^{ - }}{\pi^{ + }}{\pi^{ - }} \), \( {K^{ + }}{K^{ - }}{\pi^0}{\pi^0} \) and \( {K^{ + }}{K^{ - }}{K^{ + }}{K^{ - }} \) cross-sections measured with initial-state radiation, Phys. Rev. D 76 (2007) 012008 [arXiv:0704.0630] [INSPIRE].ADSGoogle Scholar
  51. [51]
    K. Hagiwara, A. Martin, D. Nomura and T. Teubner, Predictions for g − 2 of the muon and \( {\alpha_{\text{QED}}}({{\text{M}}^{{2}}}({\text{Z}})) \), Phys. Rev. D 69 (2004) 093003 [hep-ph/0312250] [INSPIRE].ADSGoogle Scholar
  52. [52]
    F. Mane et al., .Study of \( {e^{ + }}{e^{ - }} \to K_s^0{K^{\pm }}{\pi^{ \mp }} \) in the 1.4 GeV to 2.18GeV energy range: a new observation of an isoscalar vector meson Φ′ (1.65,GeV), Phys. Lett. B 112 (1982) 178 [INSPIRE].ADSGoogle Scholar
  53. [53]
    L.J. Reinders, H. Rubinstein and S. Yazaki, Hadron properties from QCD sum rules, Phys. Rept. 127 (1985) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    E. Di Salvo and M. Pallavicini, Predictions in the pseudoscalar channel of charmonium by means of QCD sum rules, Nucl. Phys. B 427 (1994) 22 [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    B. Geshkenbein, Calculation of gluon and four-quark condensates from the operator product expansion, Phys. Rev. D 70 (2004) 074027 [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • S. Bodenstein
    • 1
  • C. A. Dominguez
    • 1
  • S. I. Eidelman
    • 2
    • 3
  • H. Spiesberger
    • 4
  • K. Schilcher
    • 1
    • 4
  1. 1.Centre for Theoretical & Mathematical PhysicsUniversity of Cape TownRondeboschSouth Africa
  2. 2.Budker Institute of Nuclear Physics, Russian Academy of ScienceNovosibirskRussia
  3. 3.Novosibirsk State UniversityNovosibirskRussia
  4. 4.Institut fu¨r Physik, Johannes Gutenberg-Universita¨tMainzGermany

Personalised recommendations