# R-parity conservation via the Stueckelberg mechanism: LHC and Dark Matter Signals

- 236 Downloads
- 23 Citations

## Abstract

We investigate the connection between the conservation of R-parity in super- symmetry and the Stueckelberg mechanism for the mass generation of the *B* − *L* vector gauge boson. It is shown that with universal boundary conditions for soft terms of sfermions in each family at the high scale and with the Stueckelberg mechanism for generating mass for the *B* − *L* gauge boson present in the theory, electric charge conservation guarantees the conservation of R-parity in the minimal *B* − *L* extended supersymmetric standard model. We also discuss non-minimal extensions. This includes extensions where the gauge symmetries arise with an additional *U*(1)*B* − *L* ⊗ *U*(1)*X* , where *U*(1)*X* is a hidden sector gauge group. In this case the presence of the additional *U*(1)*X* allows for a *Z′* gauge boson mass with *B* − *L* interactions to lie in the sub-TeV region overcoming the multi-TeV LEP constraints. The possible tests of the models at colliders and in dark matter experi- ments are analyzed including signals of a low mass Z ^{′} resonance and the production of spin zero bosons and their decays into two photons. In this model two types of dark matter candidates emerge which are Majorana and Dirac particles. Predictions are made for a possible simultaneous observation of new physics events in dark matter experiments and at the LHC.

## Keywords

Supersymmetric gauge theory Beyond Standard Model Discrete and Finite Symmetries## References

- [1]P. Nath and P. Fileviez Perez,
*Proton stability in grand unified theories, in strings and in branes*,*Phys. Rept*.**441**(2007) 191 [hep-ph/0601023] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [2]A.H. Chamseddine, R.L. Arnowitt and P. Nath,
*Locally supersymmetric grand unification*,*Phys. Rev. Lett*.**49**(1982) 970 [INSPIRE].Google Scholar - [3]R.L. Arnowitt and P. Nath,
*SUSY mass spectrum in*SU(5)*supergravity grand unification, Phys. Rev. Lett*.**69**(1992) 725 [INSPIRE].ADSCrossRefGoogle Scholar - [4]P. Nath and R.L. Arnowitt,
*Radiative breaking, proton stability and the viability of no scale supergravity models, Phys. Lett*.**B 287**(1992) 89 [INSPIRE].ADSGoogle Scholar - [5]
- [6]H. Goldberg,
*Constraint on the photino mass from cosmology*,*Phys. Rev. Lett*.**50**(1983) 1419 [Erratum ibid. 103 (2009) 099905] [INSPIRE].ADSCrossRefGoogle Scholar - [7]B. Körs and P. Nath,
*A Stueckelberg extension of the standard model, Phys. Lett*.**B 586**(2004) 366 [hep-ph/0402047] [INSPIRE].ADSGoogle Scholar - [8]B. Körs and P. Nath,
*A supersymmetric Stueckelberg*U(1)*extension of the MSSM*,*JHEP***12**(2004) 005 [hep-ph/0406167] [INSPIRE].CrossRefGoogle Scholar - [9]B. Körs and P. Nath,
*Aspects of the Stueckelberg extension*,*JHEP***07**(2005) 069 [hep-ph/0503208] [INSPIRE].CrossRefGoogle Scholar - [10]D. Feldman, Z. Liu and P. Nath,
*Probing a very narrow Z′ boson with CDF and D0 data, Phys. Rev. Lett*.**97**(2006) 021801 [hep-ph/0603039] [INSPIRE]. - [11]D. Feldman, Z. Liu and P. Nath,
*The Stueckelberg Z Prime at the LHC: discovery potential, signature spaces and model discrimination, JHEP***11**(2006) 007 [hep-ph/0606294] [INSPIRE].ADSCrossRefGoogle Scholar - [12]P. Fileviez Perez and S. Spinner,
*Spontaneous R-parity breaking and left-right symmetry, Phys. Lett*.**B 673**(2009) 251 [arXiv:0811.3424] [INSPIRE].ADSGoogle Scholar - [13]V. Barger, P. Fileviez Perez and S. Spinner,
*Minimal gauged U*(1)*B*−*L model with spontaneous R-parity violation, Phys. Rev. Lett*.**102**(2009) 181802 [arXiv:0812.3661] [INSPIRE].ADSCrossRefGoogle Scholar - [14]P. Fileviez Perez and S. Spinner,
*Spontaneous R-parity breaking in SUSY models, Phys. Rev*.**D 80**(2009) 015004 [arXiv:0904.2213] [INSPIRE].ADSGoogle Scholar - [15]L.L. Everett, P. Fileviez Perez and S. Spinner,
*The right side of TeV scale spontaneous R-parity violation, Phys. Rev*.**D 80**(2009) 055007 [arXiv:0906.4095] [INSPIRE].ADSGoogle Scholar - [16]P. Fileviez Perez and S. Spinner,
*The fate of R-parity, Phys. Rev*.**D 83**(2011) 035004 [arXiv:1005.4930] [INSPIRE].ADSGoogle Scholar - [17]P. Fileviez Perez, S. Spinner and M.K. Trenkel,
*The LSP stability and new Higgs signals at the LHC, Phys. Rev*.**D 84**(2011) 095028 [arXiv:1103.5504] [INSPIRE].ADSGoogle Scholar - [18]S.P. Martin,
*Some simple criteria for gauged R-parity, Phys. Rev.***D 46**(1992) 2769 [hep-ph/9207218] [INSPIRE].ADSGoogle Scholar - [19]S. Khalil and A. Masiero,
*Radiative B-L symmetry breaking in supersymmetric models, Phys. Lett*.**B 665**(2008) 374 [arXiv:0710.3525] [INSPIRE].ADSGoogle Scholar - [20]M. Frank,
*Phenomenology of left-right supersymmetric models with broken B-L symmetry*,*Phys. Rev*.**D 63**(2001) 034009 [INSPIRE].ADSGoogle Scholar - [21]C. Aulakh and R.N. Mohapatra,
*Neutrino as the supersymmetric partner of the Majoron*,*Phys. Lett*.**B**119 (1982) 136 [INSPIRE].ADSGoogle Scholar - [22]L.J. Hall and M. Suzuki,
*Explicit R-parity breaking in supersymmetric models, Nucl. Phys*.**B 231**(1984) 419 [INSPIRE].ADSCrossRefGoogle Scholar - [23]A. Masiero and J. Valle,
*A model for spontaneous R-parity breaking, Phys. Lett*.**B 251**(1990) 273 [INSPIRE].ADSGoogle Scholar - [24]R. Mohapatra,
*New contributions to neutrinoless double β decay in supersymmetric theories*,*Phys. Rev*.**D**34 (1986) 3457 [INSPIRE].ADSGoogle Scholar - [25]A. Font, L.E. Ibàñez and F. Quevedo,
*Does proton stability imply the existence of an extra Z0*?,*Phys. Lett*.**B 228**(1989) 79 [INSPIRE].ADSGoogle Scholar - [26]E. Accomando, A. Belyaev, L. Fedeli, S.F. King and C. Shepherd-Themistocleous, Z′
*physics with early LHC data, Phys. Rev*.**D 83**(2011) 075012 [arXiv:1010.6058] [INSPIRE].ADSGoogle Scholar - [27]L. Basso,
*Phenomenology of the minimal B-L extension of the standard model at the LHC*, arXiv:1106.4462 [INSPIRE]. - [28]G.M. Pruna,
*Phenomenology of the minimal B − L model: the Higgs sector at the Large Hadron Collider and future Linear Colliders*, arXiv:1106.4691 [INSPIRE]. - [29]L. Basso, A. Belyaev, S. Moretti, G.M. Pruna and C.H. Shepherd-Themistocleous,
*Z′ discovery potential at the LHC for*\(\sqrt {s} = 7{ }TeV\), PoS(ICHEP2010)381 [arXiv:1011.0872] [INSPIRE]. - [30]D. Feldman, B. Körs and P. Nath,
*Extra-weakly interacting dark matter, Phys. Rev*.**D 75**(2007) 023503 [hep-ph/0610133] [INSPIRE].ADSGoogle Scholar - [31]K. Cheung and T.-C. Yuan,
*Hidden fermion as milli-charged dark matter in Stueckelberg Z′ model, JHEP***03**(2007) 120 [hep-ph/0701107] [INSPIRE].ADSCrossRefGoogle Scholar - [32]D. Feldman, Z. Liu and P. Nath,
*The Stueckelberg Z′ extension with kinetic mixing and milli-charged dark matter from the hidden sector, Phys. Rev*.**D 75**(2007) 115001 [hep-ph/0702123] [INSPIRE].ADSGoogle Scholar - [33]D. Feldman, Z. Liu and P. Nath,
*Recent developments in supersymmetric and hidden sector dark matter, AIP Conf. Proc*.**1078**(2009) 116 [arXiv:0806.4683] [INSPIRE].ADSGoogle Scholar - [34]D. Feldman, Z. Liu and P. Nath,
*The Stueckelberg extension and milli weak and milli charged dark matter, AIP Conf. Proc*.**939**(2007) 50 [arXiv:0705.2924] [INSPIRE].ADSCrossRefGoogle Scholar - [35]M. Pospelov, A. Ritz and M.B. Voloshin,
*Secluded WIMP dark matter, Phys. Lett*.**B 662**(2008) 53 [arXiv:0711.4866] [INSPIRE].ADSGoogle Scholar - [36]J.L. Feng and J. Kumar,
*The WIMPless miracle: dark-matter particles without weak-scale masses or weak interactions, Phys. Rev. Lett*.**101**(2008) 231301 [arXiv:0803.4196] [INSPIRE].ADSCrossRefGoogle Scholar - [37]A. Ibarra, A. Ringwald and C. Weniger,
*Hidden gauginos of an unbroken*U(1):*cosmological constraints and phenomenological prospects, JCAP***01**(2009) 003 [arXiv:0809.3196] [INSPIRE].ADSCrossRefGoogle Scholar - [38]Y. Cui, D.E. Morrissey, D. Poland and L. Randall,
*Candidates for inelastic dark matter, JHEP***05**(2009) 076 [arXiv:0901.0557] [INSPIRE].ADSCrossRefGoogle Scholar - [39]C. Cheung, J.T. Ruderman, L.-T. Wang and I. Yavin,
*Kinetic mixing as the origin of light dark scales, Phys. Rev*.**D 80**(2009) 035008 [arXiv:0902.3246] [INSPIRE].ADSGoogle Scholar - [40]S. Gopalakrishna, S.J. Lee and J.D. Wells,
*Dark matter and Higgs boson collider implications of fermions in an abelian-gauged hidden sector, Phys. Lett*.**B 680**(2009) 88 [arXiv:0904.2007] [INSPIRE].ADSGoogle Scholar - [41]K. Cheung, K.-H. Tsao and T.-C. Yuan, Hidden sector dirac dark matter, stueckelberg Z′
*model and the CDMS and XENON experiments*, arXiv:1003.4611 [INSPIRE]. - [42]P. Nath,
*Predicted signatures at the LHC from*U(1)*extensions of the standard model, Mod. Phys. Lett*.**A 25**(2010) 3003 [arXiv:0812.0958] [INSPIRE].ADSGoogle Scholar - [43]Z. Liu,
*Hidden sector models and signatures, Nucl. Phys. Proc. Suppl*.**200**-**202**(2010) 133 [arXiv:0910.0061] [INSPIRE].CrossRefGoogle Scholar - [44]P. Nath et al.,
*The hunt for new physics at the Large Hadron Collider, Nucl. Phys. Proc. Suppl*.**200**-**202**(2010) 185 [arXiv:1001.2693] [INSPIRE].CrossRefGoogle Scholar - [45]D. Feldman, Z. Liu, P. Nath and G. Peim,
*Multicomponent dark matter in supersymmetric hidden sector extensions, Phys. Rev*.**D 81**(2010) 095017 [arXiv:1004.0649] [INSPIRE].ADSGoogle Scholar - [46]D. Feldman, Z. Liu and P. Nath,
*PAMELA positron excess as a signal from the hidden sector, Phys. Rev*.**D 79**(2009) 063509 [arXiv:0810.5762] [INSPIRE].ADSGoogle Scholar - [47]N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer and N. Weiner,
*A theory of dark matter, Phys. Rev*.**D 79**(2009) 015014 [arXiv:0810.0713] [INSPIRE].ADSGoogle Scholar - [48]D. Feldman, Z. Liu, P. Nath and B.D. Nelson,
*Explaining PAMELA and WMAP data through coannihilations in extended SUGRA with collider implications, Phys. Rev*.**D 80**(2009) 075001 [arXiv:0907.5392] [INSPIRE].ADSGoogle Scholar - [49]N. Chen, D. Feldman, Z. Liu, P. Nath and G. Peim,
*Higgsino dark matter model consistent with galactic cosmic ray data and possibility of discovery at LHC*-7,*Phys. Rev*.**D 83**(2011) 023506 [arXiv:1010.0939] [INSPIRE].ADSGoogle Scholar - [50]N. Chen, D. Feldman, Z. Liu, P. Nath and G. Peim,
*Low mass gluino within the sparticle landscape, implications for dark matter and early discovery prospects at LHC*-7,*Phys. Rev*.**D 83**(2011) 035005 [arXiv:1011.1246] [INSPIRE].ADSGoogle Scholar - [51]D. Feldman,
*Superparticle signatures: from PAMELA to the LHC, Nucl. Phys. Proc. Suppl*.**200**-**202**(2010) 82 [arXiv:0908.3727] [INSPIRE].CrossRefGoogle Scholar - [52]A. Arvanitaki, N. Craig, S. Dimopoulos, S. Dubovsky and J. March-Russell,
*String photini at the LHC, Phys. Rev*.**D 81**(2010) 075018 [arXiv:0909.5440] [INSPIRE].ADSGoogle Scholar - [53]M. Ahlers, J. Jaeckel, J. Redondo and A. Ringwald,
*Probing hidden sector photons through the Higgs window, Phys. Rev*.**D 78**(2008) 075005 [arXiv:0807.4143] [INSPIRE].ADSGoogle Scholar - [54]M. Goodsell, J. Jaeckel, J. Redondo and A. Ringwald,
*Naturally light hidden photons in LARGE volume string compactifications, JHEP***11**(2009) 027 [arXiv:0909.0515] [INSPIRE].ADSCrossRefGoogle Scholar - [55]J. Jaeckel and A. Ringwald,
*The low-energy frontier of particle physics, Ann. Rev. Nucl. Part. Sci*.**60**(2010) 405 [arXiv:1002.0329] [INSPIRE].ADSCrossRefGoogle Scholar - [56]M. Williams, C. Burgess, A. Maharana and F. Quevedo,
*New constraints*(*and motivations*)*for abelian gauge bosons in the MeV-TeV mass range*, arXiv:1103.4556 [INSPIRE]. - [57]Y. Mambrini, The Z Z′
*kinetic mixing in the light of the recent direct and indirect dark matter searches, JCAP***07**(2011) 009 [arXiv:1104.4799] [INSPIRE].ADSCrossRefGoogle Scholar - [58]A.E. Nelson and J. Scholtz,
*Dark light, dark matter and the misalignment mechanism, Phys. Rev*.**D 84**(2011) 103501 [arXiv:1105.2812] [INSPIRE].ADSGoogle Scholar - [59]Y. Mambrini,
*Specific Dark Matter signatures from hidden*U(1), PoS(QFTHEP2010)027 [arXiv:1012.0447] [INSPIRE]. - [60]WMAP collaboration, E. Komatsu et al.,
*Seven-year Wilkinson Microwave Anisotropy Probe*(*WMAP*)*observations: cosmological interpretation, Astrophys. J. Suppl*.**192**(2011) 18 [arXiv:1001.4538] [INSPIRE].ADSCrossRefGoogle Scholar - [61]XENON100 collaboration, E. Aprile et al.,
*Dark matter results from 100 live days of XENON100 data, Phys. Rev. Lett*.**107**(2011) 131302 [arXiv:1104.2549] [INSPIRE].ADSCrossRefGoogle Scholar - [62]CDMS-II collaboration, Z. Ahmed et al.,
*Dark matter search results from the CDMS II experiment*,*Science***327**(2010) 1619 [arXiv:0912.3592] [INSPIRE].ADSCrossRefGoogle Scholar - [63]S. Abel, M. Goodsell, J. Jaeckel, V. Khoze and A. Ringwald,
*Kinetic mixing of the photon with hidden*U(1)*s in string phenomenology, JHEP***07**(2008) 124 [arXiv:0803.1449] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [64]Y. Zhang,
*Z′ mixing effect in Stueckelberg extended effective theory, Chin. Phys. Lett*.**26**(2009) 081102.ADSCrossRefGoogle Scholar - [65]Y. Zhang,
*Z′ phenomenology: a model-independent analysis and fit in combination of chiral effective theory and anomaly cancellation*, arXiv:1106.0163 [INSPIRE]. - [66]Y. Zhang and Q. Wang,
*Parameterization of general Z*-*γ*-*Z′ mixings in an electroweak chiral theory*, arXiv:1011.4418 [INSPIRE]. - [67]C. Burgess et al., C
*ontinuous global symmetries and hyperweak interactions in string compactifications, JHEP***07**(2008) 073 [arXiv:0805.4037] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [68]J. Heeck and W. Rodejohann,
*Kinetic and mass mixing with three abelian groups, Phys. Lett*.**B 705**(2011) 369 [arXiv:1109.1508] [INSPIRE].ADSGoogle Scholar - [69]C. Corianò, M. Guzzi, N. Irges and A. Mariano,
*Axion and neutralinos from supersymmetric extensions of the standard model with anomalous*U(1)’*s*,*Phys. Lett*.**B 671**(2009) 87 [arXiv:0811.0117] [INSPIRE].ADSGoogle Scholar - [70]C. Corianò, M. Guzzi, A. Mariano and S. Morelli,
*A light supersymmetric axion in an anomalous abelian extension of the standard model, Phys. Rev*.**D 80**(2009) 035006 [arXiv:0811.3675] [INSPIRE].ADSGoogle Scholar - [71]C. Corianò, M. Guzzi, G. Lazarides and A. Mariano,
*Cosmological properties of a gauged axion, Phys. Rev. D***82**(2010) 065013 [arXiv:1005.5441] [INSPIRE].ADSGoogle Scholar - [72]P. Anastasopoulos et al.,
*Minimal anomalous*U(1)′*extension of the MSSM, Phys. Rev*.**D 78**(2008) 085014 [arXiv:0804.1156] [INSPIRE].ADSGoogle Scholar - [73]T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio,
*Dark matter in anomalous*U (1)′*models with neutral mixing*,*Phys. Rev*.**D 84**(2011) 051702 [arXiv:1105.4753] [INSPIRE].Google Scholar - [74]F. Fucito, A. Lionetto, A. Mammarella and A. Racioppi,
*Stueckelino dark matter in anomalous*U(1)′*models, Eur. Phys. J*.**C 69**(2010) 455 [arXiv:0811.1953] [INSPIRE].ADSCrossRefGoogle Scholar - [75]G. Panotopoulos and P. Tuzon,
*The physics of a new gauge boson in a Stueckelberg extension of the two-Higgs-doublet model, JHEP***07**(2011) 039 [arXiv:1102.5726] [INSPIRE].ADSCrossRefGoogle Scholar - [76]P.G. Camara, L.E. Ibàñez and F. Marchesano,
*RR photons, JHEP***09**(2011) 110 [arXiv:1106.0060] [INSPIRE].ADSCrossRefGoogle Scholar - [77]M.J. Dolan, J. Marsano, N. Saulina and S. Schäfer-Nameki,
*F*-*theory GUTs with*U(1)*symmetries: generalities and survey, Phys. Rev*.**D 84**(2011) 066008 [arXiv:1102.0290] [INSPIRE].ADSGoogle Scholar - [78]M. Cvetič, J. Halverson and P. Langacker,
*Implications of string constraints for exotic matter and Z′ s**beyond the standard model, JHEP***11**(2011) 058 [arXiv:1108.5187] [INSPIRE].ADSCrossRefGoogle Scholar - [79]M. Kalb and P. Ramond,
*Classical direct interstring action, Phys. Rev*.**D 9**(1974) 2273 [INSPIRE].ADSGoogle Scholar - [80]P. Fayet and J. Iliopoulos,
*Spontaneously broken supergauge symmetries and goldstone spinors*,*Phys. Lett*.**B 51**(1974) 461 [INSPIRE].ADSGoogle Scholar - [81]S.P. Martin and M.T. Vaughn,
*Two loop renormalization group equations for soft supersymmetry breaking couplings, Phys. Rev*.**D 50**(1994) 2282 [Erratum ibid. D 78 (2008) 039903] [hep-ph/9311340] [INSPIRE].ADSGoogle Scholar - [82]P. Nath and R.L. Arnowitt,
*Nonuniversal soft SUSY breaking and dark matter, Phys. Rev*.**D 56**(1997) 2820 [hep-ph/9701301] [INSPIRE].ADSGoogle Scholar - [83]M. Ambroso and B. Ovrut,
*The B-L/electroweak hierarchy in heterotic string and M-theory, JHEP***10**(2009) 011 [arXiv:0904.4509] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [84]M. Ambroso and B.A. Ovrut,
*The B-L*/*electroweak hierarchy in smooth heterotic compactifications*,*Int. J. Mod. Phys*.**A 25**(2010) 2631 [arXiv:0910.1129] [INSPIRE].MathSciNetADSGoogle Scholar - [85]M. Ambroso and B.A. Ovrut,
*The mass spectra, hierarchy and cosmology of B-L MSSM heterotic compactifications*, arXiv:1005.5392 [INSPIRE]. - [86]M.S. Carena, A. Daleo, B.A. Dobrescu and T.M. Tait,
*Z′ gauge bosons at the Tevatron, Phys. Rev*.**D 70**(2004) 093009 [hep-ph/0408098] [INSPIRE].ADSGoogle Scholar - [87]Muon g-2 collaboration, G.W. Bennett et al.,
*Measurement of the negative muon anomalous magnetic moment to*0.7*ppm*,*Phys. Rev. Lett*.**92**(2004) 161802 [hep-ex/0401008] [INSPIRE].ADSCrossRefGoogle Scholar - [88]D0 collaboration, V.M. Abazov et al.,
*Search for a heavy neutral gauge boson in the dielectron channel with*5.4*fb*−1*of ppbar collisions at*\(\sqrt {s} = 1.96{ }TeV\),*Phys. Lett*.**B 695**(2011) 88 [arXiv:1008.2023] [INSPIRE].ADSGoogle Scholar - [89]T. Sjöstrand, S. Mrenna and P.Z. Skands,
*PYTHIA*6.4*physics and manual, JHEP***05**(2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefGoogle Scholar - [90]J. Conway et al.,
*PGS4*—*Pretty Good Simulation of high energy collision*, http://physics.ucdavis.edu/˜conway/research/software/pgs/pgs4-general.htm. - [91]G. Aad et al.,
*Search for dilepton resonances in pp collisions at*\(\sqrt {s} = 7{ }TeV\)*with the ATLAS detector*, arXiv:1108.1582 [INSPIRE]. - [92]ATLAS collaboration,
*Search for high mass dilepton resonances in pp collisions at*\(\sqrt {s} = 7{ }TeV\)*with the ATLAS experiment*, ATLAS-CONF-2011-083 (2011).Google Scholar - [93]E. Salvioni, G. Villadoro and F. Zwirner,
*Minimal Z′ models: present bounds and early LHC reach*,*JHEP***11**(2009) 068 [arXiv:0909.1320] [INSPIRE].ADSCrossRefGoogle Scholar - [94]M.S. Chanowitz,
*A heavy little higgs and a light Z′ under the radar, Phys. Rev*.**D 84**(2011) 035014 [arXiv:1102.3672] [INSPIRE].ADSGoogle Scholar - [95]CMS collaboration, S. Chatrchyan et al.,
*Search for resonances in the dilepton mass distribution in pp**collisions at*\(\sqrt {s} = 7{ }TeV\),*JHEP***05**(2011) 093 [arXiv:1103.0981] [INSPIRE].ADSGoogle Scholar - [96]A. Djouadi,
*Squark effects on Higgs boson production and decay at the LHC*,*Phys. Lett*.**B 435**(1998) 101 [hep-ph/9806315] [INSPIRE].ADSGoogle Scholar - [97]M. Spira,
*QCD effects in Higgs physics, Fortsch. Phys*.**46**(1998) 203 [hep-ph/9705337] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar - [98]G.F. Giudice, R. Rattazzi and J.D. Wells,
*Graviscalars from higher dimensional metrics and curvature Higgs mixing, Nucl. Phys*.**B 595**(2001) 250 [hep-ph/0002178] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [99]A. De Rujula, J. Lykken, M. Pierini, C. Rogan and M. Spiropulu,
*Higgs look-alikes at the LHC, Phys. Rev*.**D 82**(2010) 013003 [arXiv:1001.5300] [INSPIRE].ADSGoogle Scholar - [100]I. Low, J. Lykken and G. Shaughnessy,
*Singlet scalars as Higgs imposters at the Large Hadron Collider*,*Phys. Rev*.**D 84**(2011) 035027 [arXiv:1105.4587] [INSPIRE].ADSGoogle Scholar - [101]P.J. Fox, D. Tucker-Smith and N. Weiner,
*Higgs friends and counterfeits at hadron colliders, JHEP***06**(2011) 127 [arXiv:1104.5450] [INSPIRE].ADSCrossRefGoogle Scholar - [102]
*International Europhysics Conference on High Energy Physics*(*EPS-HEP2011*), July 21–27, Grenoble, France (2011).Google Scholar - [103]
*XXV International Symposium on Lepton Photon Interactions at High Energies*(*Lepton Photon 11*), August 22–27, Mumbai, India (2011).Google Scholar - [104]D. Feldman and G. Kane,
*A Wino-like LSP world: theoretical and phenomenological motivations, in Perspectives on Supersymmetry II*, G.K. Kane ed., World Scientific, Singapore (2010).Google Scholar - [105]M. Drees and M. Nojiri,
*Neutralino-nucleon scattering revisited, Phys. Rev*.**D 48**(1993) 3483 [hep-ph/9307208] [INSPIRE].ADSGoogle Scholar - [106]M. Drees and M.M. Nojiri,
*New contributions to coherent neutralino-nucleus scattering, Phys. Rev*.**D 47**(1993) 4226 [hep-ph/9210272] [INSPIRE].ADSGoogle Scholar - [107]J. Hisano, K. Ishiwata and N. Nagata,
*Gluon contribution to the dark matter direct detection, Phys. Rev*.**D 82**(2010) 115007 [arXiv:1007.2601] [INSPIRE].ADSGoogle Scholar - [108]U. Chattopadhyay, T. Ibrahim and P. Nath,
*Effects of CP-violation on event rates in the direct detection of dark matter, Phys. Rev*.**D 60**(1999) 063505 [hep-ph/9811362] [INSPIRE].ADSGoogle Scholar - [109]A. Corsetti and P. Nath,
*Gaugino mass nonuniversality and dark matter in SUGRA, strings and D*-*brane models, Phys. Rev*.**D 64**(2001) 125010 [hep-ph/0003186] [INSPIRE].ADSGoogle Scholar - [110]G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov,
*Dark matter direct detection rate in a generic model with micrOMEGAs*2.2,*Comput. Phys. Commun*.**180**(2009) 747 [arXiv:0803.2360] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar - [111]ATLAS collaboration, G. Aad et al.,
*Search for supersymmetry using final states with one lepton, jets and missing transverse momentum with the ATLAS detector in*\(\sqrt {s} = 7{ }TeV\)*pp*,*Phys. Rev. Lett*.**106**(2011) 131802 [arXiv:1102.2357] [INSPIRE].ADSCrossRefGoogle Scholar - [112]CMS collaboration, V. Khachatryan et al.,
*Search for supersymmetry in pp collisions at*7*TeV in events with jets and missing transverse energy, Phys. Lett*.**B 698**(2011) 196 [arXiv:1101.1628] [INSPIRE].ADSGoogle Scholar - [113]ATLAS collaboration, G. Aad et al., Search for supersymmetry in pp collisions at \(\sqrt {s} = 7{ }TeV\)
*in final states with missing transverse momentum and b-jets*,*Phys. Lett*.**B 701**(2011) 398 [arXiv:1103.4344] [INSPIRE].ADSGoogle Scholar - [114]CMS collaboration, S. Chatrchyan et al.,
*Search for supersymmetry at the LHC in events with jets and missing transverse energy*, arXiv:1109.2352 [INSPIRE]. - [115]ATLAS collaboration,
*Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in*\(\sqrt {s} = 7{ }TeV\)*proton-proton collisions*, ATLAS-CONF-2011-086 (2011).Google Scholar - [116]S. Akula, D. Feldman, Z. Liu, P. Nath and G. Peim,
*New constraints on dark matter from CMS and ATLAS data, Mod. Phys. Lett*.**A 26**(2011) 1521 [arXiv:1103.5061] [INSPIRE].ADSGoogle Scholar - [117]S. Akula, D. Feldman, P. Nath and G. Peim,
*Excess observed in CDF*\({\text{B}}_s^0 \to {\mu^{ + }}{\mu^{ - }}\)*and SUSY at the LHC*, arXiv:1107.3535 [INSPIRE]. - [118]S. Akula et al.,
*Interpreting the first CMS and ATLAS SUSY results, Phys. Lett*.**B 699**(2011) 377 [arXiv:1103.1197] [INSPIRE].ADSGoogle Scholar - [119]O. Buchmueller et al.,
*Supersymmetry and dark matter in light of LHC 2010 and Xenon100 data, Eur. Phys. J*.**C 71**(2011) 1722 [arXiv:1106.2529] [INSPIRE].ADSCrossRefGoogle Scholar - [120]C. Boehm, A. Djouadi and M. Drees,
*Light scalar top quarks and supersymmetric dark matter, Phys. Rev*.**D 62**(2000) 035012 [hep-ph/9911496] [INSPIRE].ADSGoogle Scholar - [121]Y. Santoso,
*Neutralino stop coannihilation in the CMSSM, Nucl. Phys. Proc. Suppl*.**124**(2003) 166 [hep-ph/0205026] [INSPIRE].ADSCrossRefGoogle Scholar - [122]P. Nath and R.L. Arnowitt,
*Predictions in*SU(5)*supergravity grand unification with proton stability and relic density constraints, Phys. Rev. Lett*.**70**(1993) 3696 [hep-ph/9302318] [INSPIRE].ADSCrossRefGoogle Scholar - [123]K. Griest and D. Seckel,
*Three exceptions in the calculation of relic abundances, Phys. Rev*.**D 43**(1991) 3191 [INSPIRE].ADSGoogle Scholar - [124]P. Gondolo and G. Gelmini,
*Cosmic abundances of stable particles: Improved analysis, Nucl. Phys*.**B 360**(1991) 145 [INSPIRE].ADSCrossRefGoogle Scholar - [125]E.J. Chun, J.-C. Park and S. Scopel,
*Dark matter and a new gauge boson through kinetic mixing, JHEP***02**(2011) 100 [arXiv:1011.3300] [INSPIRE].ADSCrossRefGoogle Scholar - [126]P. Gondolo, P. Ko and Y. Omura,
*Light dark matter in leptophobic Z′ models*, arXiv:1106.0885 [INSPIRE]. - [127]PAMELA collaboration, O. Adriani et al.,
*An anomalous positron abundance in cosmic rays with energies*1.5–100*GeV*,*Nature***458**(2009) 607 [arXiv:0810.4995] [INSPIRE].ADSCrossRefGoogle Scholar - [128]
*2011 Fermi Symposium*, May 9–12, Roma, Italy (2011), http://fermi.gsfc.nasa.gov/science/symposium/2011/. - [129]G. Angloher et al.,
*Results from*730*kg days of the CRESST-II dark matter search*, arXiv:1109.0702 [INSPIRE]. - [130]CoGeNT collaboration, C. Aalseth et al.,
*Results from a search for light-mass dark matter with a p-type point contact germanium detector, Phys. Rev. Lett*.**106**(2011) 131301 [arXiv:1002.4703] [INSPIRE].ADSCrossRefGoogle Scholar - [131]D. Feldman, Z. Liu and P. Nath,
*Low mass neutralino dark matter in the MSSM with constraints from*\({B_s} \to {\mu^{ + }} {\mu^{ - }}\)*and Higgs search limits, Phys. Rev*.**D 81**(2010) 117701 [arXiv:1003.0437] [INSPIRE].ADSGoogle Scholar - [132]E. Kuflik, A. Pierce and K.M. Zurek,
*Light neutralinos with large scattering cross sections in the minimal supersymmetric standard model, Phys. Rev*.**D 81**(2010) 111701 [arXiv:1003.0682] [INSPIRE].ADSGoogle Scholar - [133]D.A. Vasquez, G. Bélanger, C. Boehm, A. Pukhov and J. Silk,
*Can neutralinos in the MSSM and NMSSM scenarios still be light?, Phys. Rev*.**D 82**(2010) 115027 [arXiv:1009.4380] [INSPIRE].ADSGoogle Scholar - [134]J.-J. Cao et al.,
*Light dark matter in NMSSM and implication on Higgs phenomenology, Phys. Lett*.**B 703**(2011) 292 [arXiv:1104.1754] [INSPIRE].ADSGoogle Scholar - [135]D.T. Cumberbatch, D.E. Lopez-Fogliani, L. Roszkowski, R.R. de Austri and Y.-L.S. Tsai,
*Is light neutralino as dark matter still viable*?, arXiv:1107.1604 [INSPIRE]. - [136]M. Vazques Acosta,
*Higgs searches at the LHC,*talk given at the*SUSY 2011*, August 28–September 2, Fermilab, U.S.A. (2011).Google Scholar - [137]D. Feldman, K. Freese, P. Nath, B.D. Nelson and G. Peim,
*Predictive signatures of supersymmetry: measuring the dark matter mass and gluino mass with early LHC data, Phys. Rev*.**D 84**(2011) 015007 [arXiv:1102.2548] [INSPIRE].ADSGoogle Scholar - [138]L.M. Krauss and F. Wilczek,
*Discrete gauge symmetry in continuum theories, Phys. Rev. Lett*.**62**(1989) 1221 [INSPIRE].ADSCrossRefGoogle Scholar - [139]S.P. Martin,
*Implications of supersymmetric models with natural R-parity conservation, Phys. Rev*.**D 54**(1996) 2340 [hep-ph/9602349] [INSPIRE].ADSGoogle Scholar - [140]G. Cacciapaglia, C. Csáki, G. Marandella and A. Strumia,
*The minimal set of electroweak precision parameters, Phys. Rev*.**D 74**(2006) 033011 [hep-ph/0604111] [INSPIRE].ADSGoogle Scholar - [141]R. Barbier et al.,
*R-parity violating supersymmetry*,*Phys. Rept*.**420**(2005) 1 [hep-ph/0406039] [INSPIRE].ADSCrossRefGoogle Scholar