Advertisement

R-parity conservation via the Stueckelberg mechanism: LHC and Dark Matter Signals

  • Daniel Feldman
  • Pavel Fileviez Perez
  • Pran Nath
Open Access
Article

Abstract

We investigate the connection between the conservation of R-parity in super- symmetry and the Stueckelberg mechanism for the mass generation of the B − L vector gauge boson. It is shown that with universal boundary conditions for soft terms of sfermions in each family at the high scale and with the Stueckelberg mechanism for generating mass for the B − L gauge boson present in the theory, electric charge conservation guarantees the conservation of R-parity in the minimal B − L extended supersymmetric standard model. We also discuss non-minimal extensions. This includes extensions where the gauge symmetries arise with an additional U(1)B − LU(1)X , where U(1)X is a hidden sector gauge group. In this case the presence of the additional U(1)X allows for a Z′ gauge boson mass with B − L interactions to lie in the sub-TeV region overcoming the multi-TeV LEP constraints. The possible tests of the models at colliders and in dark matter experi- ments are analyzed including signals of a low mass Z resonance and the production of spin zero bosons and their decays into two photons. In this model two types of dark matter candidates emerge which are Majorana and Dirac particles. Predictions are made for a possible simultaneous observation of new physics events in dark matter experiments and at the LHC.

Keywords

Supersymmetric gauge theory Beyond Standard Model Discrete and Finite Symmetries 

References

  1. [1]
    P. Nath and P. Fileviez Perez, Proton stability in grand unified theories, in strings and in branes, Phys. Rept. 441 (2007) 191 [hep-ph/0601023] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    A.H. Chamseddine, R.L. Arnowitt and P. Nath, Locally supersymmetric grand unification, Phys. Rev. Lett. 49 (1982) 970 [INSPIRE].Google Scholar
  3. [3]
    R.L. Arnowitt and P. Nath, SUSY mass spectrum in SU(5) supergravity grand unification, Phys. Rev. Lett. 69 (1992) 725 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    P. Nath and R.L. Arnowitt, Radiative breaking, proton stability and the viability of no scale supergravity models, Phys. Lett. B 287 (1992) 89 [INSPIRE].ADSGoogle Scholar
  5. [5]
    P. Nath, Twenty years of SUGRA, hep-ph/0307123 [INSPIRE].
  6. [6]
    H. Goldberg, Constraint on the photino mass from cosmology, Phys. Rev. Lett. 50 (1983) 1419 [Erratum ibid. 103 (2009) 099905] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    B. Körs and P. Nath, A Stueckelberg extension of the standard model, Phys. Lett. B 586 (2004) 366 [hep-ph/0402047] [INSPIRE].ADSGoogle Scholar
  8. [8]
    B. Körs and P. Nath, A supersymmetric Stueckelberg U(1) extension of the MSSM, JHEP 12 (2004) 005 [hep-ph/0406167] [INSPIRE].CrossRefGoogle Scholar
  9. [9]
    B. Körs and P. Nath, Aspects of the Stueckelberg extension, JHEP 07 (2005) 069 [hep-ph/0503208] [INSPIRE].CrossRefGoogle Scholar
  10. [10]
    D. Feldman, Z. Liu and P. Nath, Probing a very narrow Z′ boson with CDF and D0 data, Phys. Rev. Lett. 97 (2006) 021801 [hep-ph/0603039] [INSPIRE].
  11. [11]
    D. Feldman, Z. Liu and P. Nath, The Stueckelberg Z Prime at the LHC: discovery potential, signature spaces and model discrimination, JHEP 11 (2006) 007 [hep-ph/0606294] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    P. Fileviez Perez and S. Spinner, Spontaneous R-parity breaking and left-right symmetry, Phys. Lett. B 673 (2009) 251 [arXiv:0811.3424] [INSPIRE].ADSGoogle Scholar
  13. [13]
    V. Barger, P. Fileviez Perez and S. Spinner, Minimal gauged U(1)B − L model with spontaneous R-parity violation, Phys. Rev. Lett. 102 (2009) 181802 [arXiv:0812.3661] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    P. Fileviez Perez and S. Spinner, Spontaneous R-parity breaking in SUSY models, Phys. Rev. D 80 (2009) 015004 [arXiv:0904.2213] [INSPIRE].ADSGoogle Scholar
  15. [15]
    L.L. Everett, P. Fileviez Perez and S. Spinner, The right side of TeV scale spontaneous R-parity violation, Phys. Rev. D 80 (2009) 055007 [arXiv:0906.4095] [INSPIRE].ADSGoogle Scholar
  16. [16]
    P. Fileviez Perez and S. Spinner, The fate of R-parity, Phys. Rev. D 83 (2011) 035004 [arXiv:1005.4930] [INSPIRE].ADSGoogle Scholar
  17. [17]
    P. Fileviez Perez, S. Spinner and M.K. Trenkel, The LSP stability and new Higgs signals at the LHC, Phys. Rev. D 84 (2011) 095028 [arXiv:1103.5504] [INSPIRE].ADSGoogle Scholar
  18. [18]
    S.P. Martin, Some simple criteria for gauged R-parity, Phys. Rev. D 46 (1992) 2769 [hep-ph/9207218] [INSPIRE].ADSGoogle Scholar
  19. [19]
    S. Khalil and A. Masiero, Radiative B-L symmetry breaking in supersymmetric models, Phys. Lett. B 665 (2008) 374 [arXiv:0710.3525] [INSPIRE].ADSGoogle Scholar
  20. [20]
    M. Frank, Phenomenology of left-right supersymmetric models with broken B-L symmetry, Phys. Rev. D 63 (2001) 034009 [INSPIRE].ADSGoogle Scholar
  21. [21]
    C. Aulakh and R.N. Mohapatra, Neutrino as the supersymmetric partner of the Majoron, Phys. Lett. B 119 (1982) 136 [INSPIRE].ADSGoogle Scholar
  22. [22]
    L.J. Hall and M. Suzuki, Explicit R-parity breaking in supersymmetric models, Nucl. Phys. B 231 (1984) 419 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    A. Masiero and J. Valle, A model for spontaneous R-parity breaking, Phys. Lett. B 251 (1990) 273 [INSPIRE].ADSGoogle Scholar
  24. [24]
    R. Mohapatra, New contributions to neutrinoless double β decay in supersymmetric theories, Phys. Rev. D 34 (1986) 3457 [INSPIRE].ADSGoogle Scholar
  25. [25]
    A. Font, L.E. Ibàñez and F. Quevedo, Does proton stability imply the existence of an extra Z0?, Phys. Lett. B 228 (1989) 79 [INSPIRE].ADSGoogle Scholar
  26. [26]
    E. Accomando, A. Belyaev, L. Fedeli, S.F. King and C. Shepherd-Themistocleous, Z′ physics with early LHC data, Phys. Rev. D 83 (2011) 075012 [arXiv:1010.6058] [INSPIRE].ADSGoogle Scholar
  27. [27]
    L. Basso, Phenomenology of the minimal B-L extension of the standard model at the LHC, arXiv:1106.4462 [INSPIRE].
  28. [28]
    G.M. Pruna, Phenomenology of the minimal B − L model: the Higgs sector at the Large Hadron Collider and future Linear Colliders, arXiv:1106.4691 [INSPIRE].
  29. [29]
    L. Basso, A. Belyaev, S. Moretti, G.M. Pruna and C.H. Shepherd-Themistocleous, Z′ discovery potential at the LHC for \(\sqrt {s} = 7{ }TeV\), PoS(ICHEP2010)381 [arXiv:1011.0872] [INSPIRE].
  30. [30]
    D. Feldman, B. Körs and P. Nath, Extra-weakly interacting dark matter, Phys. Rev. D 75 (2007) 023503 [hep-ph/0610133] [INSPIRE].ADSGoogle Scholar
  31. [31]
    K. Cheung and T.-C. Yuan, Hidden fermion as milli-charged dark matter in Stueckelberg Z′ model, JHEP 03 (2007) 120 [hep-ph/0701107] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    D. Feldman, Z. Liu and P. Nath, The Stueckelberg Z′ extension with kinetic mixing and milli-charged dark matter from the hidden sector, Phys. Rev. D 75 (2007) 115001 [hep-ph/0702123] [INSPIRE].ADSGoogle Scholar
  33. [33]
    D. Feldman, Z. Liu and P. Nath, Recent developments in supersymmetric and hidden sector dark matter, AIP Conf. Proc. 1078 (2009) 116 [arXiv:0806.4683] [INSPIRE].ADSGoogle Scholar
  34. [34]
    D. Feldman, Z. Liu and P. Nath, The Stueckelberg extension and milli weak and milli charged dark matter, AIP Conf. Proc. 939 (2007) 50 [arXiv:0705.2924] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    M. Pospelov, A. Ritz and M.B. Voloshin, Secluded WIMP dark matter, Phys. Lett. B 662 (2008) 53 [arXiv:0711.4866] [INSPIRE].ADSGoogle Scholar
  36. [36]
    J.L. Feng and J. Kumar, The WIMPless miracle: dark-matter particles without weak-scale masses or weak interactions, Phys. Rev. Lett. 101 (2008) 231301 [arXiv:0803.4196] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    A. Ibarra, A. Ringwald and C. Weniger, Hidden gauginos of an unbroken U(1): cosmological constraints and phenomenological prospects, JCAP 01 (2009) 003 [arXiv:0809.3196] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    Y. Cui, D.E. Morrissey, D. Poland and L. Randall, Candidates for inelastic dark matter, JHEP 05 (2009) 076 [arXiv:0901.0557] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    C. Cheung, J.T. Ruderman, L.-T. Wang and I. Yavin, Kinetic mixing as the origin of light dark scales, Phys. Rev. D 80 (2009) 035008 [arXiv:0902.3246] [INSPIRE].ADSGoogle Scholar
  40. [40]
    S. Gopalakrishna, S.J. Lee and J.D. Wells, Dark matter and Higgs boson collider implications of fermions in an abelian-gauged hidden sector, Phys. Lett. B 680 (2009) 88 [arXiv:0904.2007] [INSPIRE].ADSGoogle Scholar
  41. [41]
    K. Cheung, K.-H. Tsao and T.-C. Yuan, Hidden sector dirac dark matter, stueckelberg Z′ model and the CDMS and XENON experiments, arXiv:1003.4611 [INSPIRE].
  42. [42]
    P. Nath, Predicted signatures at the LHC from U(1) extensions of the standard model, Mod. Phys. Lett. A 25 (2010) 3003 [arXiv:0812.0958] [INSPIRE].ADSGoogle Scholar
  43. [43]
    Z. Liu, Hidden sector models and signatures, Nucl. Phys. Proc. Suppl. 200-202 (2010) 133 [arXiv:0910.0061] [INSPIRE].CrossRefGoogle Scholar
  44. [44]
    P. Nath et al., The hunt for new physics at the Large Hadron Collider, Nucl. Phys. Proc. Suppl. 200-202 (2010) 185 [arXiv:1001.2693] [INSPIRE].CrossRefGoogle Scholar
  45. [45]
    D. Feldman, Z. Liu, P. Nath and G. Peim, Multicomponent dark matter in supersymmetric hidden sector extensions, Phys. Rev. D 81 (2010) 095017 [arXiv:1004.0649] [INSPIRE].ADSGoogle Scholar
  46. [46]
    D. Feldman, Z. Liu and P. Nath, PAMELA positron excess as a signal from the hidden sector, Phys. Rev. D 79 (2009) 063509 [arXiv:0810.5762] [INSPIRE].ADSGoogle Scholar
  47. [47]
    N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer and N. Weiner, A theory of dark matter, Phys. Rev. D 79 (2009) 015014 [arXiv:0810.0713] [INSPIRE].ADSGoogle Scholar
  48. [48]
    D. Feldman, Z. Liu, P. Nath and B.D. Nelson, Explaining PAMELA and WMAP data through coannihilations in extended SUGRA with collider implications, Phys. Rev. D 80 (2009) 075001 [arXiv:0907.5392] [INSPIRE].ADSGoogle Scholar
  49. [49]
    N. Chen, D. Feldman, Z. Liu, P. Nath and G. Peim, Higgsino dark matter model consistent with galactic cosmic ray data and possibility of discovery at LHC-7, Phys. Rev. D 83 (2011) 023506 [arXiv:1010.0939] [INSPIRE].ADSGoogle Scholar
  50. [50]
    N. Chen, D. Feldman, Z. Liu, P. Nath and G. Peim, Low mass gluino within the sparticle landscape, implications for dark matter and early discovery prospects at LHC-7, Phys. Rev. D 83 (2011) 035005 [arXiv:1011.1246] [INSPIRE].ADSGoogle Scholar
  51. [51]
    D. Feldman, Superparticle signatures: from PAMELA to the LHC, Nucl. Phys. Proc. Suppl. 200-202 (2010) 82 [arXiv:0908.3727] [INSPIRE].CrossRefGoogle Scholar
  52. [52]
    A. Arvanitaki, N. Craig, S. Dimopoulos, S. Dubovsky and J. March-Russell, String photini at the LHC, Phys. Rev. D 81 (2010) 075018 [arXiv:0909.5440] [INSPIRE].ADSGoogle Scholar
  53. [53]
    M. Ahlers, J. Jaeckel, J. Redondo and A. Ringwald, Probing hidden sector photons through the Higgs window, Phys. Rev. D 78 (2008) 075005 [arXiv:0807.4143] [INSPIRE].ADSGoogle Scholar
  54. [54]
    M. Goodsell, J. Jaeckel, J. Redondo and A. Ringwald, Naturally light hidden photons in LARGE volume string compactifications, JHEP 11 (2009) 027 [arXiv:0909.0515] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    J. Jaeckel and A. Ringwald, The low-energy frontier of particle physics, Ann. Rev. Nucl. Part. Sci. 60 (2010) 405 [arXiv:1002.0329] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    M. Williams, C. Burgess, A. Maharana and F. Quevedo, New constraints (and motivations) for abelian gauge bosons in the MeV-TeV mass range, arXiv:1103.4556 [INSPIRE].
  57. [57]
    Y. Mambrini, The Z Z′ kinetic mixing in the light of the recent direct and indirect dark matter searches, JCAP 07 (2011) 009 [arXiv:1104.4799] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    A.E. Nelson and J. Scholtz, Dark light, dark matter and the misalignment mechanism, Phys. Rev. D 84 (2011) 103501 [arXiv:1105.2812] [INSPIRE].ADSGoogle Scholar
  59. [59]
    Y. Mambrini, Specific Dark Matter signatures from hidden U(1), PoS(QFTHEP2010)027 [arXiv:1012.0447] [INSPIRE].
  60. [60]
    WMAP collaboration, E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    XENON100 collaboration, E. Aprile et al., Dark matter results from 100 live days of XENON100 data, Phys. Rev. Lett. 107 (2011) 131302 [arXiv:1104.2549] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    CDMS-II collaboration, Z. Ahmed et al., Dark matter search results from the CDMS II experiment, Science 327 (2010) 1619 [arXiv:0912.3592] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    S. Abel, M. Goodsell, J. Jaeckel, V. Khoze and A. Ringwald, Kinetic mixing of the photon with hidden U(1)s in string phenomenology, JHEP 07 (2008) 124 [arXiv:0803.1449] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  64. [64]
    Y. Zhang, Z′ mixing effect in Stueckelberg extended effective theory, Chin. Phys. Lett. 26 (2009) 081102.ADSCrossRefGoogle Scholar
  65. [65]
    Y. Zhang, Z′ phenomenology: a model-independent analysis and fit in combination of chiral effective theory and anomaly cancellation, arXiv:1106.0163 [INSPIRE].
  66. [66]
    Y. Zhang and Q. Wang, Parameterization of general Z -γ-Z′ mixings in an electroweak chiral theory, arXiv:1011.4418 [INSPIRE].
  67. [67]
    C. Burgess et al., Continuous global symmetries and hyperweak interactions in string compactifications, JHEP 07 (2008) 073 [arXiv:0805.4037] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  68. [68]
    J. Heeck and W. Rodejohann, Kinetic and mass mixing with three abelian groups, Phys. Lett. B 705 (2011) 369 [arXiv:1109.1508] [INSPIRE].ADSGoogle Scholar
  69. [69]
    C. Corianò, M. Guzzi, N. Irges and A. Mariano, Axion and neutralinos from supersymmetric extensions of the standard model with anomalous U(1)’s, Phys. Lett. B 671 (2009) 87 [arXiv:0811.0117] [INSPIRE].ADSGoogle Scholar
  70. [70]
    C. Corianò, M. Guzzi, A. Mariano and S. Morelli, A light supersymmetric axion in an anomalous abelian extension of the standard model, Phys. Rev. D 80 (2009) 035006 [arXiv:0811.3675] [INSPIRE].ADSGoogle Scholar
  71. [71]
    C. Corianò, M. Guzzi, G. Lazarides and A. Mariano, Cosmological properties of a gauged axion, Phys. Rev. D 82 (2010) 065013 [arXiv:1005.5441] [INSPIRE].ADSGoogle Scholar
  72. [72]
    P. Anastasopoulos et al., Minimal anomalous U(1)′ extension of the MSSM, Phys. Rev. D 78 (2008) 085014 [arXiv:0804.1156] [INSPIRE].ADSGoogle Scholar
  73. [73]
    T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio, Dark matter in anomalous U (1)′ models with neutral mixing, Phys. Rev. D 84 (2011) 051702 [arXiv:1105.4753] [INSPIRE].Google Scholar
  74. [74]
    F. Fucito, A. Lionetto, A. Mammarella and A. Racioppi, Stueckelino dark matter in anomalous U(1)′ models, Eur. Phys. J. C 69 (2010) 455 [arXiv:0811.1953] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    G. Panotopoulos and P. Tuzon, The physics of a new gauge boson in a Stueckelberg extension of the two-Higgs-doublet model, JHEP 07 (2011) 039 [arXiv:1102.5726] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    P.G. Camara, L.E. Ibàñez and F. Marchesano, RR photons, JHEP 09 (2011) 110 [arXiv:1106.0060] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    M.J. Dolan, J. Marsano, N. Saulina and S. Schäfer-Nameki, F-theory GUTs with U(1) symmetries: generalities and survey, Phys. Rev. D 84 (2011) 066008 [arXiv:1102.0290] [INSPIRE].ADSGoogle Scholar
  78. [78]
    M. Cvetič, J. Halverson and P. Langacker, Implications of string constraints for exotic matter and Z′ s beyond the standard model, JHEP 11 (2011) 058 [arXiv:1108.5187] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    M. Kalb and P. Ramond, Classical direct interstring action, Phys. Rev. D 9 (1974) 2273 [INSPIRE].ADSGoogle Scholar
  80. [80]
    P. Fayet and J. Iliopoulos, Spontaneously broken supergauge symmetries and goldstone spinors, Phys. Lett. B 51 (1974) 461 [INSPIRE].ADSGoogle Scholar
  81. [81]
    S.P. Martin and M.T. Vaughn, Two loop renormalization group equations for soft supersymmetry breaking couplings, Phys. Rev. D 50 (1994) 2282 [Erratum ibid. D 78 (2008) 039903] [hep-ph/9311340] [INSPIRE].ADSGoogle Scholar
  82. [82]
    P. Nath and R.L. Arnowitt, Nonuniversal soft SUSY breaking and dark matter, Phys. Rev. D 56 (1997) 2820 [hep-ph/9701301] [INSPIRE].ADSGoogle Scholar
  83. [83]
    M. Ambroso and B. Ovrut, The B-L/electroweak hierarchy in heterotic string and M-theory, JHEP 10 (2009) 011 [arXiv:0904.4509] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  84. [84]
    M. Ambroso and B.A. Ovrut, The B-L/electroweak hierarchy in smooth heterotic compactifications, Int. J. Mod. Phys. A 25 (2010) 2631 [arXiv:0910.1129] [INSPIRE].MathSciNetADSGoogle Scholar
  85. [85]
    M. Ambroso and B.A. Ovrut, The mass spectra, hierarchy and cosmology of B-L MSSM heterotic compactifications, arXiv:1005.5392 [INSPIRE].
  86. [86]
    M.S. Carena, A. Daleo, B.A. Dobrescu and T.M. Tait, Z′ gauge bosons at the Tevatron, Phys. Rev. D 70 (2004) 093009 [hep-ph/0408098] [INSPIRE].ADSGoogle Scholar
  87. [87]
    Muon g-2 collaboration, G.W. Bennett et al., Measurement of the negative muon anomalous magnetic moment to 0.7 ppm, Phys. Rev. Lett. 92 (2004) 161802 [hep-ex/0401008] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    D0 collaboration, V.M. Abazov et al., Search for a heavy neutral gauge boson in the dielectron channel with 5.4 fb−1 of ppbar collisions at \(\sqrt {s} = 1.96{ }TeV\), Phys. Lett. B 695 (2011) 88 [arXiv:1008.2023] [INSPIRE].ADSGoogle Scholar
  89. [89]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    J. Conway et al., PGS4Pretty Good Simulation of high energy collision, http://physics.ucdavis.edu/˜conway/research/software/pgs/pgs4-general.htm.
  91. [91]
    G. Aad et al., Search for dilepton resonances in pp collisions at \(\sqrt {s} = 7{ }TeV\) with the ATLAS detector, arXiv:1108.1582 [INSPIRE].
  92. [92]
    ATLAS collaboration, Search for high mass dilepton resonances in pp collisions at \(\sqrt {s} = 7{ }TeV\) with the ATLAS experiment, ATLAS-CONF-2011-083 (2011).Google Scholar
  93. [93]
    E. Salvioni, G. Villadoro and F. Zwirner, Minimal Z′ models: present bounds and early LHC reach, JHEP 11 (2009) 068 [arXiv:0909.1320] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    M.S. Chanowitz, A heavy little higgs and a light Z′ under the radar, Phys. Rev. D 84 (2011) 035014 [arXiv:1102.3672] [INSPIRE].ADSGoogle Scholar
  95. [95]
    CMS collaboration, S. Chatrchyan et al., Search for resonances in the dilepton mass distribution in pp collisions at \(\sqrt {s} = 7{ }TeV\), JHEP 05 (2011) 093 [arXiv:1103.0981] [INSPIRE].ADSGoogle Scholar
  96. [96]
    A. Djouadi, Squark effects on Higgs boson production and decay at the LHC, Phys. Lett. B 435 (1998) 101 [hep-ph/9806315] [INSPIRE].ADSGoogle Scholar
  97. [97]
    M. Spira, QCD effects in Higgs physics, Fortsch. Phys. 46 (1998) 203 [hep-ph/9705337] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  98. [98]
    G.F. Giudice, R. Rattazzi and J.D. Wells, Graviscalars from higher dimensional metrics and curvature Higgs mixing, Nucl. Phys. B 595 (2001) 250 [hep-ph/0002178] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  99. [99]
    A. De Rujula, J. Lykken, M. Pierini, C. Rogan and M. Spiropulu, Higgs look-alikes at the LHC, Phys. Rev. D 82 (2010) 013003 [arXiv:1001.5300] [INSPIRE].ADSGoogle Scholar
  100. [100]
    I. Low, J. Lykken and G. Shaughnessy, Singlet scalars as Higgs imposters at the Large Hadron Collider, Phys. Rev. D 84 (2011) 035027 [arXiv:1105.4587] [INSPIRE].ADSGoogle Scholar
  101. [101]
    P.J. Fox, D. Tucker-Smith and N. Weiner, Higgs friends and counterfeits at hadron colliders, JHEP 06 (2011) 127 [arXiv:1104.5450] [INSPIRE].ADSCrossRefGoogle Scholar
  102. [102]
    International Europhysics Conference on High Energy Physics (EPS-HEP2011), July 21–27, Grenoble, France (2011).Google Scholar
  103. [103]
    XXV International Symposium on Lepton Photon Interactions at High Energies (Lepton Photon 11), August 22–27, Mumbai, India (2011).Google Scholar
  104. [104]
    D. Feldman and G. Kane, A Wino-like LSP world: theoretical and phenomenological motivations, in Perspectives on Supersymmetry II, G.K. Kane ed., World Scientific, Singapore (2010).Google Scholar
  105. [105]
    M. Drees and M. Nojiri, Neutralino-nucleon scattering revisited, Phys. Rev. D 48 (1993) 3483 [hep-ph/9307208] [INSPIRE].ADSGoogle Scholar
  106. [106]
    M. Drees and M.M. Nojiri, New contributions to coherent neutralino-nucleus scattering, Phys. Rev. D 47 (1993) 4226 [hep-ph/9210272] [INSPIRE].ADSGoogle Scholar
  107. [107]
    J. Hisano, K. Ishiwata and N. Nagata, Gluon contribution to the dark matter direct detection, Phys. Rev. D 82 (2010) 115007 [arXiv:1007.2601] [INSPIRE].ADSGoogle Scholar
  108. [108]
    U. Chattopadhyay, T. Ibrahim and P. Nath, Effects of CP-violation on event rates in the direct detection of dark matter, Phys. Rev. D 60 (1999) 063505 [hep-ph/9811362] [INSPIRE].ADSGoogle Scholar
  109. [109]
    A. Corsetti and P. Nath, Gaugino mass nonuniversality and dark matter in SUGRA, strings and D-brane models, Phys. Rev. D 64 (2001) 125010 [hep-ph/0003186] [INSPIRE].ADSGoogle Scholar
  110. [110]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, Dark matter direct detection rate in a generic model with micrOMEGAs 2.2, Comput. Phys. Commun. 180 (2009) 747 [arXiv:0803.2360] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  111. [111]
    ATLAS collaboration, G. Aad et al., Search for supersymmetry using final states with one lepton, jets and missing transverse momentum with the ATLAS detector in \(\sqrt {s} = 7{ }TeV\) pp, Phys. Rev. Lett. 106 (2011) 131802 [arXiv:1102.2357] [INSPIRE].ADSCrossRefGoogle Scholar
  112. [112]
    CMS collaboration, V. Khachatryan et al., Search for supersymmetry in pp collisions at 7 TeV in events with jets and missing transverse energy, Phys. Lett. B 698 (2011) 196 [arXiv:1101.1628] [INSPIRE].ADSGoogle Scholar
  113. [113]
    ATLAS collaboration, G. Aad et al., Search for supersymmetry in pp collisions at \(\sqrt {s} = 7{ }TeV\) in final states with missing transverse momentum and b-jets, Phys. Lett. B 701 (2011) 398 [arXiv:1103.4344] [INSPIRE].ADSGoogle Scholar
  114. [114]
    CMS collaboration, S. Chatrchyan et al., Search for supersymmetry at the LHC in events with jets and missing transverse energy, arXiv:1109.2352 [INSPIRE].
  115. [115]
    ATLAS collaboration, Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \(\sqrt {s} = 7{ }TeV\) proton-proton collisions, ATLAS-CONF-2011-086 (2011).Google Scholar
  116. [116]
    S. Akula, D. Feldman, Z. Liu, P. Nath and G. Peim, New constraints on dark matter from CMS and ATLAS data, Mod. Phys. Lett. A 26 (2011) 1521 [arXiv:1103.5061] [INSPIRE].ADSGoogle Scholar
  117. [117]
    S. Akula, D. Feldman, P. Nath and G. Peim, Excess observed in CDF \({\text{B}}_s^0 \to {\mu^{ + }}{\mu^{ - }}\) and SUSY at the LHC, arXiv:1107.3535 [INSPIRE].
  118. [118]
    S. Akula et al., Interpreting the first CMS and ATLAS SUSY results, Phys. Lett. B 699 (2011) 377 [arXiv:1103.1197] [INSPIRE].ADSGoogle Scholar
  119. [119]
    O. Buchmueller et al., Supersymmetry and dark matter in light of LHC 2010 and Xenon100 data, Eur. Phys. J. C 71 (2011) 1722 [arXiv:1106.2529] [INSPIRE].ADSCrossRefGoogle Scholar
  120. [120]
    C. Boehm, A. Djouadi and M. Drees, Light scalar top quarks and supersymmetric dark matter, Phys. Rev. D 62 (2000) 035012 [hep-ph/9911496] [INSPIRE].ADSGoogle Scholar
  121. [121]
    Y. Santoso, Neutralino stop coannihilation in the CMSSM, Nucl. Phys. Proc. Suppl. 124 (2003) 166 [hep-ph/0205026] [INSPIRE].ADSCrossRefGoogle Scholar
  122. [122]
    P. Nath and R.L. Arnowitt, Predictions in SU(5) supergravity grand unification with proton stability and relic density constraints, Phys. Rev. Lett. 70 (1993) 3696 [hep-ph/9302318] [INSPIRE].ADSCrossRefGoogle Scholar
  123. [123]
    K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances, Phys. Rev. D 43 (1991) 3191 [INSPIRE].ADSGoogle Scholar
  124. [124]
    P. Gondolo and G. Gelmini, Cosmic abundances of stable particles: Improved analysis, Nucl. Phys. B 360 (1991) 145 [INSPIRE].ADSCrossRefGoogle Scholar
  125. [125]
    E.J. Chun, J.-C. Park and S. Scopel, Dark matter and a new gauge boson through kinetic mixing, JHEP 02 (2011) 100 [arXiv:1011.3300] [INSPIRE].ADSCrossRefGoogle Scholar
  126. [126]
    P. Gondolo, P. Ko and Y. Omura, Light dark matter in leptophobic Z′ models, arXiv:1106.0885 [INSPIRE].
  127. [127]
    PAMELA collaboration, O. Adriani et al., An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV, Nature 458 (2009) 607 [arXiv:0810.4995] [INSPIRE].ADSCrossRefGoogle Scholar
  128. [128]
    2011 Fermi Symposium, May 9–12, Roma, Italy (2011), http://fermi.gsfc.nasa.gov/science/symposium/2011/.
  129. [129]
    G. Angloher et al., Results from 730 kg days of the CRESST-II dark matter search, arXiv:1109.0702 [INSPIRE].
  130. [130]
    CoGeNT collaboration, C. Aalseth et al., Results from a search for light-mass dark matter with a p-type point contact germanium detector, Phys. Rev. Lett. 106 (2011) 131301 [arXiv:1002.4703] [INSPIRE].ADSCrossRefGoogle Scholar
  131. [131]
    D. Feldman, Z. Liu and P. Nath, Low mass neutralino dark matter in the MSSM with constraints from \({B_s} \to {\mu^{ + }} {\mu^{ - }}\) and Higgs search limits, Phys. Rev. D 81 (2010) 117701 [arXiv:1003.0437] [INSPIRE].ADSGoogle Scholar
  132. [132]
    E. Kuflik, A. Pierce and K.M. Zurek, Light neutralinos with large scattering cross sections in the minimal supersymmetric standard model, Phys. Rev. D 81 (2010) 111701 [arXiv:1003.0682] [INSPIRE].ADSGoogle Scholar
  133. [133]
    D.A. Vasquez, G. Bélanger, C. Boehm, A. Pukhov and J. Silk, Can neutralinos in the MSSM and NMSSM scenarios still be light?, Phys. Rev. D 82 (2010) 115027 [arXiv:1009.4380] [INSPIRE].ADSGoogle Scholar
  134. [134]
    J.-J. Cao et al., Light dark matter in NMSSM and implication on Higgs phenomenology, Phys. Lett. B 703 (2011) 292 [arXiv:1104.1754] [INSPIRE].ADSGoogle Scholar
  135. [135]
    D.T. Cumberbatch, D.E. Lopez-Fogliani, L. Roszkowski, R.R. de Austri and Y.-L.S. Tsai, Is light neutralino as dark matter still viable?, arXiv:1107.1604 [INSPIRE].
  136. [136]
    M. Vazques Acosta, Higgs searches at the LHC, talk given at the SUSY 2011, August 28–September 2, Fermilab, U.S.A. (2011).Google Scholar
  137. [137]
    D. Feldman, K. Freese, P. Nath, B.D. Nelson and G. Peim, Predictive signatures of supersymmetry: measuring the dark matter mass and gluino mass with early LHC data, Phys. Rev. D 84 (2011) 015007 [arXiv:1102.2548] [INSPIRE].ADSGoogle Scholar
  138. [138]
    L.M. Krauss and F. Wilczek, Discrete gauge symmetry in continuum theories, Phys. Rev. Lett. 62 (1989) 1221 [INSPIRE].ADSCrossRefGoogle Scholar
  139. [139]
    S.P. Martin, Implications of supersymmetric models with natural R-parity conservation, Phys. Rev. D 54 (1996) 2340 [hep-ph/9602349] [INSPIRE].ADSGoogle Scholar
  140. [140]
    G. Cacciapaglia, C. Csáki, G. Marandella and A. Strumia, The minimal set of electroweak precision parameters, Phys. Rev. D 74 (2006) 033011 [hep-ph/0604111] [INSPIRE].ADSGoogle Scholar
  141. [141]
    R. Barbier et al., R-parity violating supersymmetry, Phys. Rept. 420 (2005) 1 [hep-ph/0406039] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Daniel Feldman
    • 1
    • 2
  • Pavel Fileviez Perez
    • 3
  • Pran Nath
    • 4
  1. 1.Michigan Center for Theoretical PhysicsUniversity of MichiganAnn ArborU.S.A.
  2. 2.CERN Theory Group VisitorGeneva 23Switzerland
  3. 3.Center for Cosmology and Particle Physics (CCPP), Department of PhysicsNew York UniversityNew YorkU.S.A.
  4. 4.Northeastern University, Department of PhysicsBostonU.S.A.

Personalised recommendations