Advertisement

\( {\Lambda_{{\overline {\text{MS}} }}} \) from the static potential for QCD with n f  = 2 dynamical quark flavors

  • Karl Jansen
  • Felix Karbstein
  • Attila Nagy
  • Marc WagnerEmail author
Open Access
Article

Abstract

We determine \( {\Lambda_{{\overline {\text{MS}} }}} \) for QCD with n f  = 2 dynamical quark flavors by fitting the \( Q\overline Q \) static potential known analytically in the perturbative regime up to terms of \( \mathcal{O}\left( {\alpha_s^4} \right) \) and \( \sim \alpha_s^4\ln \,{\alpha_s} \) to corresponding results obtained from lattice simulations. This has become possible, due to recent advances in both perturbative calculations, namely the determination and publication of the last missing contribution to the \( Q\overline Q \) static potential at \( \mathcal{O}\left( {\alpha_s^4} \right) \), and lattice simulations with n f  = 2 dynamical quark flavors performed at the rather fine lattice spacing of a ≈ 0.042 fm. Imposing conservative error estimates we obtain \( {\Lambda_{{\overline {\text{MS}} }}} = 315\left( {30} \right){\text{MEV}} \).

Keywords

Lattice QCD NLO Computations QCD 

References

  1. [1]
    W. Fischler, Quark-anti-quark potential in QCD, Nucl. Phys. B 129 (1977) 157 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    A. Billoire, How heavy must be quarks in order to build coulombic \( q\overline q \) bound states, Phys. Lett. B 92 (1980) 343 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    M. Peter, The static quark-anti-quark potential in QCD to three loops, Phys. Rev. Lett. 78 (1997) 602 [hep-ph/9610209] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    M. Peter, The static potential in QCD: a full two loop calculation, Nucl. Phys. B 501 (1997) 471 [hep-ph/9702245] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    Y. Schröder, The static potential in QCD to two loops, Phys. Lett. B 447 (1999) 321 [hep-ph/9812205] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Three-loop static potential, Phys. Rev. Lett. 104 (2010) 112002 [arXiv:0911.4742] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    C. Anzai, Y. Kiyo and Y. Sumino, Static QCD potential at three-loop order, Phys. Rev. Lett. 104 (2010) 112003 [arXiv:0911.4335] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    F. Chishtie and V. Elias, RG/Pade estimate of the three loop contribution to the QCD static potential function, Phys. Lett. B 521 (2001) 434 [hep-ph/0107052] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Full result for the three-loop static quark potential, PoS RADCOR2009 (2010) 075 [arXiv:1001.2668] [INSPIRE].Google Scholar
  10. [10]
    A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Fermionic contributions to the three-loop static potential, Phys. Lett. B 668 (2008) 293 [arXiv:0809.1927] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    T. Appelquist, M. Dine and I. Muzinich, The static limit of quantum chromodynamics, Phys. Rev. D 17 (1978) 2074 [INSPIRE].ADSGoogle Scholar
  12. [12]
    N. Brambilla, A. Pineda, J. Soto and A. Vairo, The infrared behavior of the static potential in perturbative QCD, Phys. Rev. D 60 (1999) 091502 [hep-ph/9903355] [INSPIRE].ADSGoogle Scholar
  13. [13]
    S. Necco and R. Sommer, The N f = 0 heavy quark potential from short to intermediate distances, Nucl. Phys. B 622 (2002) 328 [hep-lat/0108008] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    M. Donnellan, F. Knechtli, B. Leder and R. Sommer, Determination of the static potential with dynamical fermions, Nucl. Phys. B 849 (2011) 45 [arXiv:1012.3037] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    C. Michael, The running coupling from lattice gauge theory, Phys. Lett. B 283 (1992) 103 [hep-lat/9205010] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo, Precision determination of \( {r_0}\Lambda_{{\overline {\text{MS}} }}^{ - } \) from the QCD static energy, Phys. Rev. Lett. 105 (2010) 212001 [arXiv:1006.2066] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    A. Pineda and J. Soto, Effective field theory for ultrasoft momenta in NRQCD and NRQED, Nucl. Phys. Proc. Suppl. 64 (1998) 428 [hep-ph/9707481] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    N. Brambilla, A. Pineda, J. Soto and A. Vairo, Potential NRQCD: an effective theory for heavy quarkonium, Nucl. Phys. B 566 (2000) 275 [hep-ph/9907240] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    ETM collaboration, P. Boucaud et al., Dynamical twisted mass fermions with light quarks, Phys. Lett. B 650 (2007) 304 [hep-lat/0701012] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    ETM collaboration, P. Boucaud et al., Dynamical twisted mass fermions with light quarks: simulation and analysis details, Comput. Phys. Commun. 179 (2008) 695 [arXiv:0803.0224] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    ETM collaboration, R. Baron et al., Light meson physics from maximally twisted mass lattice QCD, JHEP 08 (2010) 097 [arXiv:0911.5061] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    P. Weisz, Continuum limit improved lattice action for pure Yang-Mills theory. 1., Nucl. Phys. B 212 (1983) 1 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    Alpha collaboration, R. Frezzotti, P.A. Grassi, S. Sint and P. Weisz, Lattice QCD with a chirally twisted mass term, JHEP 08 (2001) 058 [hep-lat/0101001] [INSPIRE].Google Scholar
  24. [24]
    R. Frezzotti and G. Rossi, Chirally improving Wilson fermions. 1. O(a) improvement, JHEP 08 (2004) 007 [hep-lat/0306014] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    R. Frezzotti and G. Rossi, Chirally improving Wilson fermions. II. Four-quark operators, JHEP 10 (2004) 070 [hep-lat/0407002] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    A. Shindler, Twisted mass lattice QCD, Phys. Rept. 461 (2008) 37 [arXiv:0707.4093] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    ETM collaboration, K. Jansen, C. Michael, A. Shindler and M. Wagner, The static-light meson spectrum from twisted mass lattice QCD, JHEP 12 (2008) 058 [arXiv:0810.1843] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    J.E. Bresenham, Algorithm for computer control of a digital plotter, IBM Syst. J. 4 (1965) 25.CrossRefGoogle Scholar
  29. [29]
    B. Bolder, T. Struckmann, G.S. Bali, N. Eicker, T. Lippert, et al., A high precision study of the \( q\overline q \) potential from Wilson loops in the regime of string breaking, Phys. Rev. D 63 (2001) 074504 [hep-lat/0005018] [INSPIRE].ADSGoogle Scholar
  30. [30]
    S. Necco, The static quark potential and scaling behavior of SU(3) lattice Yang-Mills theory, hep-lat/0306005 [INSPIRE].
  31. [31]
    C. Anzai, Y. Kiyo and Y. Sumino, Violation of Casimir scaling for static QCD potential at three-loop order, Nucl. Phys. B 838 (2010) 28 [arXiv:1004.1562] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    T. van Ritbergen, J. Vermaseren and S. Larin, The four loop β-function in quantum chromodynamics, Phys. Lett. B 400 (1997) 379 [hep-ph/9701390] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo, The logarithmic contribution to the QCD static energy at N4 LO, Phys. Lett. B 647 (2007) 185 [hep-ph/0610143] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    W.A. Bardeen, A. Buras, D. Duke and T. Muta, Deep inelastic scattering beyond the leading order in asymptotically free gauge theories, Phys. Rev. D 18 (1978) 3998 [INSPIRE].ADSGoogle Scholar
  35. [35]
    W. Furmanski and R. Petronzio, Lepton-hadron processes beyond leading order in quantum chromodynamics, Z. Phys. C 11 (1982) 293 [INSPIRE].ADSGoogle Scholar
  36. [36]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    ALPHA collaboration, S. Capitani, M. Lüscher, R. Sommer and H. Wittig, Nonperturbative quark mass renormalization in quenched lattice QCD, Nucl. Phys. B 544 (1999) 669 [hep-lat/9810063] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    A. Pineda, The static potential: lattice versus perturbation theory in a renormalon based approach, J. Phys. G 29 (2003) 371 [hep-ph/0208031] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    A. Pineda and J. Soto, The renormalization group improvement of the QCD static potentials, Phys. Lett. B 495 (2000) 323 [hep-ph/0007197] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    N. Brambilla, A. Vairo, X. Garcia i Tormo and J. Soto, The QCD static energy at NNNLL, Phys. Rev. D 80 (2009) 034016 [arXiv:0906.1390] [INSPIRE].ADSGoogle Scholar
  41. [41]
    R. Sommer, A new Way to set the energy scale in lattice gauge theories and its applications to the static force and αs in SU(2) Yang-Mills theory, Nucl. Phys. B 411 (1994) 839 [hep-lat/9310022] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    ETM collaboration, M. Wagner and C. Wiese, The static-light baryon spectrum from twisted mass lattice QCD, JHEP 07 (2011) 016 [arXiv:1104.4921] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    ALPHA collaboration, M. Della Morte et al., Computation of the strong coupling in QCD with two dynamical flavors, Nucl. Phys. B 713 (2005) 378 [hep-lat/0411025] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    ALPHA collaboration, B. Leder and F. Knechtli, Scale r 0 and the static potential from the CLS lattices, PoS LATTICE2010 (2010) 233 [arXiv:1012.1141] [INSPIRE].Google Scholar
  45. [45]
    M. Gockeler, R. Horsley, A. Irving, D. Pleiter, P. Rakow, et al., A determination of the Λ parameter from full lattice QCD, Phys. Rev. D 73 (2006) 014513 [hep-ph/0502212] [INSPIRE].ADSGoogle Scholar
  46. [46]
    A. Sternbeck, E.-M. Ilgenfritz, K. Maltman, M. Muller-Preussker, L. von Smekal, et al., QCD Λ parameter from Landau-gauge gluon and ghost correlations, PoS LAT2009 (2009) 210 [arXiv:1003.1585] [INSPIRE].Google Scholar
  47. [47]
    ETM collaboration, B. Blossier et al., Ghost-gluon coupling, power corrections and \( {\Lambda_{{\overline {\text{MS}} }}} \) from twisted-mass lattice QCD at N f= 2, Phys. Rev. D 82 (2010) 034510 [arXiv:1005.5290] [INSPIRE].ADSGoogle Scholar
  48. [48]
    J.-L. Kneur and A. Neveu, \( \Lambda_{{\overline {\text{MS}} }}^{\text{QCD}} \) from renormalization group optimized perturbation, arXiv:1108.3501 [INSPIRE].
  49. [49]
    R. Baron, P. Boucaud, J. Carbonell, A. Deuzeman, V. Drach, et al., Light hadrons from lattice QCD with light (u, d), strange and charm dynamical quarks, JHEP 06 (2010) 111 [arXiv:1004.5284] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    European Twisted Mass collaboration, R. Baron et al., Computing K and D meson masses with N f= 2 + 1 + 1 twisted mass lattice QCD, Comput. Phys. Commun. 182 (2011) 299 [arXiv:1005.2042] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  51. [51]
    M. Lüscher and P. Weisz, Coordinate space methods for the evaluation of Feynman diagrams in lattice field theories, Nucl. Phys. B 445 (1995) 429 [hep-lat/9502017] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Karl Jansen
    • 1
    • 2
  • Felix Karbstein
    • 3
    • 4
  • Attila Nagy
    • 5
  • Marc Wagner
    • 6
    Email author
  1. 1.DESYZeuthenGermany
  2. 2.Dipartimento di FisicaUniversità di Roma “Tor Vergata” and INFNRomaItaly
  3. 3.Helmholtz-Institut JenaJenaGermany
  4. 4.Theoretisch-Physikalisches InstitutFriedrich-Schiller-Universität JenaJenaGermany
  5. 5.Humboldt Universität zu BerlinBerlinGermany
  6. 6.Goethe-Universität Frankfurt am MainInstitut für Theoretische PhysikFrankfurt am MainGermany

Personalised recommendations