Identifying the colour of TeV-scale resonances

  • S. Ask
  • J. H. Collins
  • J. R. Forshaw
  • K. Joshi
  • A. D. Pilkington


We explore how the colour of any new TeV-scale resonances that decay into top quark pairs can be identified by studying the dependence of the observed cross-section on a central jet veto. To facilitate this study, colour octet resonance production was implemented in Pythia8 and colour singlet resonance production is simulated after minor modifications. We find that the colour of a 2 TeV resonance can be identified with 10 fb−1 of data at a centre-of-mass energy of 14 TeV for a wide range of couplings, but only if the uncertainty in the theoretical prediction is dramatically reduced from its current level.


Hadronic Colliders QCD 


  1. [1]
    I. Sung, Probing the gauge content of heavy resonances with soft radiation, Phys. Rev. D 80 (2009) 094020 [arXiv:0908.3688] [INSPIRE].ADSGoogle Scholar
  2. [2]
    J. Gallicchio and M.D. Schwartz, Seeing in color: jet superstructure, Phys. Rev. Lett. 105 (2010) 022001 [arXiv:1001.5027] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    T. Han, I. Lewis and Z. Liu, Colored resonant signals at the LHC: largest rate and simplest topology, JHEP 12 (2010) 085 [arXiv:1010.4309] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    C. Englert, T. Plehn, P. Schichtel and S. Schumann, Jets plus missing energy with an autofocus, Phys. Rev. D 83 (2011) 095009 [arXiv:1102.4615] [INSPIRE].ADSGoogle Scholar
  5. [5]
    B.E. Cox, J.R. Forshaw and A.D. Pilkington, Extracting Higgs boson couplings using a jet veto, Phys. Lett. B 696 (2011) 87 [arXiv:1006.0986] [INSPIRE].ADSGoogle Scholar
  6. [6]
    ATLAS collaboration, G. Aad et al., Measurement of dijet production with a veto on additional central jet activity in pp collisions at \(\sqrt {s} = 7\,TeV\) using the ATLAS detector, JHEP 09 (2011) 053 [arXiv:1107.1641] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    E. Gerwick, T. Plehn and S. Schumann, Understanding jet scaling and jet vetos in Higgs searches, arXiv:1108.3335 [INSPIRE].
  8. [8]
    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. [9]
    B. Lillie, L. Randall and L.-T. Wang, The bulk RS KK-gluon at the LHC, JHEP 09 (2007) 074 [hep-ph/0701166] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    K. Agashe, A. Belyaev, T. Krupovnickas, G. Perez and J. Virzi, LHC signals from warped extra dimensions, Phys. Rev. D 77 (2008) 015003 [hep-ph/0612015] [INSPIRE].ADSGoogle Scholar
  11. [11]
    Y. Grossman and M. Neubert, Neutrino masses and mixings in nonfactorizable geometry, Phys. Lett. B 474 (2000) 361 [hep-ph/9912408] [INSPIRE].MathSciNetADSGoogle Scholar
  12. [12]
    T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS, Nucl. Phys. B 586 (2000) 141 [hep-ph/0003129] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    S.J. Huber and Q. Shafi, Fermion masses, mixings and proton decay in a Randall-Sundrum model, Phys. Lett. B 498 (2001) 256 [hep-ph/0010195] [INSPIRE].ADSGoogle Scholar
  14. [14]
    L. Randall and M.D. Schwartz, Quantum field theory and unification in AdS5, JHEP 11 (2001) 003 [hep-th/0108114] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    K. Agashe, A. Delgado and R. Sundrum, Grand unification in RS1, Annals Phys. 304 (2003) 145 [hep-ph/0212028] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  16. [16]
    M.S. Carena, A. Delgado, E. Ponton, T.M. Tait and C. Wagner, Precision electroweak data and unification of couplings in warped extra dimensions, Phys. Rev. D 68 (2003) 035010 [hep-ph/0305188] [INSPIRE].ADSGoogle Scholar
  17. [17]
    K. Agashe, R. Contino and R. Sundrum, Top compositeness and precision unification, Phys. Rev. Lett. 95 (2005) 171804 [hep-ph/0502222] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    K. Agashe and G. Servant, Warped unification, proton stability and dark matter, Phys. Rev. Lett. 93 (2004) 231805 [hep-ph/0403143] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    K. Agashe and G. Servant, Baryon number in warped GUTs: model building and (dark matter related) phenomenology, JCAP 02 (2005) 002 [hep-ph/0411254] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    CDF collaboration, T. Aaltonen et al., Evidence for a mass dependent forward-backward asymmetry in top quark pair production, Phys. Rev. D 83 (2011) 112003 [arXiv:1101.0034] [INSPIRE].ADSGoogle Scholar
  21. [21]
    CDF collaboration, T. Aaltonen et al., Forward-backward asymmetry in top quark production in \(p\overline p\) collisions at sqrts = 1.96 TeV, Phys. Rev. Lett. 101 (2008) 202001 [arXiv:0806.2472] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    D0 collaboration, V.M. Abazov et al., Forward-backward asymmetry in top quark-antiquark production, arXiv:1107.4995 [INSPIRE].
  23. [23]
    D0 collaboration, V. Abazov et al., First measurement of the forward-backward charge asymmetry in top quark pair production, Phys. Rev. Lett. 100 (2008) 142002 [arXiv:0712.0851] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    Y. Bai, J.L. Hewett, J. Kaplan and T.G. Rizzo, LHC predictions from a Tevatron anomaly in the top quark forward-backward asymmetry, JHEP 03 (2011) 003 [arXiv:1101.5203] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  26. [26]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    L.D. Landau, The moment of a 2-photon system, Dokl. Akad. Nauk Ser. Fiz. 60 (1948) 207.Google Scholar
  28. [28]
    C.-N. Yang, Selection rules for the dematerialization of a particle into two photons, Phys. Rev. 77 (1950) 242 [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  29. [29]
    B.C. Allanach, F. Mahmoudi, J.P. Skittrall and K. Sridhar, Gluon-initiated production of a Kaluza-Klein gluon in a bulk Randall-Sundrum model, JHEP 03 (2010) 014 [arXiv:0910.1350] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    A. Djouadi, G. Moreau, F. Richard and R.K. Singh, The forward-backward asymmetry of top quark production at the Tevatron in warped extra dimensional models, Phys. Rev. D 82 (2010) 071702 [arXiv:0906.0604] [INSPIRE].ADSGoogle Scholar
  31. [31]
    P. Ferrario and G. Rodrigo, Constraining heavy colored resonances from top-antitop quark events, Phys. Rev. D 80 (2009) 051701 [arXiv:0906.5541] [INSPIRE].ADSGoogle Scholar
  32. [32]
    M. Bauer, F. Goertz, U. Haisch, T. Pfoh and S. Westhoff, Top-quark forward-backward asymmetry in Randall-Sundrum models beyond the leading order, JHEP 11 (2010) 039 [arXiv:1008.0742] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    H. Davoudiasl, J. Hewett and T. Rizzo, Experimental probes of localized gravity: on and off the wall, Phys. Rev. D 63 (2001) 075004 [hep-ph/0006041] [INSPIRE].ADSGoogle Scholar
  34. [34]
    CTEQ collaboration, H. Lai et al., Global QCD analysis of parton structure of the nucleon: CTEQ5 parton distributions, Eur. Phys. J. C 12 (2000) 375 [hep-ph/9903282] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the kt jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [INSPIRE].ADSGoogle Scholar
  37. [37]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet: a software package for jet finding in pp and e + e − collisions,
  38. [38]
    D.E. Kaplan, K. Rehermann, M.D. Schwartz and B. Tweedie, Top tagging: a method for identifying boosted hadronically decaying top quarks, Phys. Rev. Lett. 101 (2008) 142001 [arXiv:0806.0848] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    A. Abdesselam et al., Boosted objects: a probe of beyond the Standard Model physics, Eur. Phys. J. C 71 (2011) 1661 [arXiv:1012.5412] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    R.M.D. Delgado, J.R. Forshaw, S. Marzani and M.H. Seymour, The dijet cross section with a jet veto, JHEP 08 (2011) 157 [arXiv:1107.2084] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    B. Lillie, J. Shu and T.M. Tait, Kaluza-Klein gluons as a diagnostic of warped models, Phys. Rev. D 76 (2007) 115016 [arXiv:0706.3960] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • S. Ask
    • 1
  • J. H. Collins
    • 1
  • J. R. Forshaw
    • 2
  • K. Joshi
    • 2
  • A. D. Pilkington
    • 2
    • 3
  1. 1.Cavendish LaboratoryUniversity of CambridgeCambridgeU.K.
  2. 2.School of Physics & AstronomyUniversity of ManchesterManchesterU.K.
  3. 3.Institute of Particle Physics PhenomenologyUniversity of DurhamDurhamU.K.

Personalised recommendations