The local symmetries of M-theory and their formulation in generalised geometry

  • David S. Berman
  • Hadi Godazgar
  • Mahdi Godazgar
  • Malcolm J. Perry
Article

Abstract

In the doubled field theory approach to string theory the T-duality group is promoted to a manifest symmetry at the expense of replacing ordinary Riemannian geometry with generalised geometry on a doubled space. The local symmetries are then given by a generalised Lie derivative and its associated algebra. This paper constructs an analogous structure for the extended geometry of M-theory. A crucial by-product of this construction is the derivation of the physical section condition for M-theory formulated in an extended space.

Keywords

M-Theory Space-Time Symmetries String Duality 

References

  1. [1]
    E. Cremmer and B. Julia, The SO(8) supergravity, Nucl. Phys. B 159 (1979) 141 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    B. Julia, Group disintegrations, in Superspace and supergravity: proceedings of the Nuffield Workshop, Cambridge 1980, S.W. Hawking and M. Rocek eds., Cambridge University Press, Cambridge U.K. (1981) 331.Google Scholar
  3. [3]
    J. Thierry-Mieg and B. Morel, Superalgebras in exceptional gravity, in Superspace and supergravity: proceedings of the Nuffield Workshop, Cambridge 1980, S.W. Hawking and M. Rocek eds., Cambridge University Press, Cambridge U.K. (1981) 351.Google Scholar
  4. [4]
    B. de Wit and H. Nicolai, D = 11 supergravity with local SU(8) invariance, Nucl. Phys. B 274 (1986) 363 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    H. Nicolai, D = 11 supergravity with local SO(16) invariance, Phys. Lett. B 187 (1987) 316 [INSPIRE].MathSciNetADSGoogle Scholar
  6. [6]
    P.C. West, E 11 and M-theory, Class. Quant. Grav. 18 (2001) 4443 [hep-th/0104081] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  7. [7]
    C. Hull and B. Zwiebach, Double field theory, JHEP 09 (2009) 099 [arXiv:0904.4664] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    C. Hull and B. Zwiebach, The gauge algebra of double field theory and Courant brackets, JHEP 09 (2009) 090 [arXiv:0908.1792] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    O. Hohm, C. Hull and B. Zwiebach, Background independent action for double field theory, JHEP 07 (2010) 016 [arXiv:1003.5027] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    O. Hohm, C. Hull and B. Zwiebach, Generalized metric formulation of double field theory, JHEP 08 (2010) 008 [arXiv:1006.4823] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    N. Hitchin, Generalized Calabi-Yau manifolds, Quart. J. Math. Oxford Ser. 54 (2003) 281 [math/0209099] [INSPIRE].MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    N. Hitchin, Brackets, forms and invariant functionals (dedicated to the memory of Shiing-Shen Chern), math/0508618 [INSPIRE].
  13. [13]
    M. Gualtieri, Generalized complex geometry, Ph.D. Thesis, Oxford University, Oxford U.K. [math/0401221] [INSPIRE].
  14. [14]
    T. Courant, Dirac manifolds, Trans. Amer. Math. Soc. 319 (1990) 631.MathSciNetMATHCrossRefGoogle Scholar
  15. [15]
    T. Kugo and B. Zwiebach, Target space duality as a symmetry of string field theory, Prog. Theor. Phys. 87 (1992) 801 [hep-th/9201040] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    W. Siegel, Two vierbein formalism for string inspired axionic gravity, Phys. Rev. D 47 (1993) 5453 [hep-th/9302036] [INSPIRE].ADSGoogle Scholar
  17. [17]
    W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 2826 [hep-th/9305073] [INSPIRE].ADSGoogle Scholar
  18. [18]
    C. Hull, Generalised geometry for M-theory, JHEP 07 (2007) 079 [hep-th/0701203] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    P.P. Pacheco and D. Waldram, M-theory, exceptional generalised geometry and superpotentials, JHEP 09 (2008) 123 [arXiv:0804.1362] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    C. Hillmann, Generalized E 7(7) coset dynamics and D = 11 supergravity, JHEP 03 (2009) 135 [arXiv:0901.1581] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    D.S. Berman and M.J. Perry, Generalized geometry and M-theory, JHEP 06 (2011) 074 [arXiv:1008.1763] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    D.S. Berman, H. Godazgar and M.J. Perry, SO(5, 5) duality in M-theory and generalized geometry, Phys. Lett. B 700 (2011) 65 [arXiv:1103.5733] [INSPIRE].MathSciNetADSGoogle Scholar
  23. [23]
    D.S. Berman, H. Godazgar, M.J. Perry and P.C. West, Exceptional geometry for M-theory, in preparation.Google Scholar
  24. [24]
    D.S. Berman, H. Godazgar, M.J. Perry and P.C. West, Exceptional geometry from E 11, in preparation.Google Scholar
  25. [25]
    P.C. West, E 11, SL(32) and central charges, Phys. Lett. B 575 (2003) 333 [hep-th/0307098] [INSPIRE].ADSGoogle Scholar
  26. [26]
    A. Kleinschmidt and P.C. West, Representations of G+++ and the role of space-time, JHEP 02 (2004) 033 [hep-th/0312247] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    P.C. West, E 11 origin of brane charges and u-duality multiplets, JHEP 08 (2004) 052 [hep-th/0406150] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    P.C. West, Brane dynamics, central charges and E 11, JHEP 03 (2005) 077 [hep-th/0412336] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    P. West, Generalised space-time and duality, Phys. Lett. B 693 (2010) 373 [arXiv:1006.0893] [INSPIRE].ADSGoogle Scholar
  30. [30]
    P. West, E 11, generalised space-time and IIA string theory, Phys. Lett. B 696 (2011) 403 [arXiv:1009.2624] [INSPIRE].ADSGoogle Scholar
  31. [31]
    D.C. Thompson, Duality invariance: from M-theory to double field theory, JHEP 08 (2011) 125 [arXiv:1106.4036] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    O. Hohm and S.K. Kwak, Double field theory formulation of heterotic strings, JHEP 06 (2011) 096 [arXiv:1103.2136] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    O. Hohm, S.K. Kwak and B. Zwiebach, Unification of type II strings and T-duality, Phys. Rev. Lett. 107 (2011) 171603 [arXiv:1106.5452] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    O. Hohm and S.K. Kwak, Massive type II in double field theory, JHEP 11 (2011) 086 [arXiv:1108.4937] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    A. Coimbra, C. Strickland-Constable and D. Waldram, Supergravity as generalised geometry I: type II theories, JHEP 11 (2011) 091 [arXiv:1107.1733] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    C. Albertsson, T. Kimura and R.A. Reid-Edwards, D-branes and doubled geometry, JHEP 04 (2009) 113 [arXiv:0806.1783] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    I. Jeon, K. Lee and J.-H. Park, Differential geometry with a projection: application to double field theory, JHEP 04 (2011) 014 [arXiv:1011.1324] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    O. Hohm and S.K. Kwak, Frame-like geometry of double field theory, J. Phys. A 44 (2011) 085404 [arXiv:1011.4101] [INSPIRE].MathSciNetADSGoogle Scholar
  39. [39]
    I. Jeon, K. Lee and J.-H. Park, Double field formulation of Yang-Mills theory, Phys. Lett. B 701 (2011) 260 [arXiv:1102.0419] [INSPIRE].MathSciNetADSGoogle Scholar
  40. [40]
    I. Jeon, K. Lee and J.-H. Park, Stringy differential geometry, beyond Riemann, Phys. Rev. D 84 (2011) 044022 [arXiv:1105.6294] [INSPIRE].ADSGoogle Scholar
  41. [41]
    D. Andriot, M. Larfors, D. Lu¨st and P. Patalong, A ten-dimensional action for non-geometric fluxes, JHEP 09 (2011) 134 [arXiv:1106.4015] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    C. Albertsson, S.-H. Dai, P.-W. Kao and F.-L. Lin, Double field theory for double D-branes, JHEP 09 (2011) 025 [arXiv:1107.0876] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    N. Kan, K. Kobayashi and K. Shiraishi, Equations of motion in double field theory: from particles to scale factors, arXiv:1108.5795 [INSPIRE].
  44. [44]
    G. Aldazabal, W. Baron, D. Marques and C. Nu´n˜ez, The effective action of double field theory, JHEP 11 (2011) 052 [Erratum ibid. 1111 (2011) 109] [arXiv:1109.0290] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    I. Jeon, K. Lee and J.-H. Park, Incorporation of fermions into double field theory, JHEP 11 (2011) 025 [arXiv:1109.2035] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    D.S. Berman, E.T. Musaev and M.J. Perry, Boundary terms in generalized geometry and doubled field theory, Phys. Lett. B 706 (2011) 228 [arXiv:1110.3097] [INSPIRE].MathSciNetADSGoogle Scholar
  47. [47]
    M. Gran˜a, R. Minasian, M. Petrini and D. Waldram, T-duality, generalized geometry and non-geometric backgrounds, JHEP 04 (2009) 075 [arXiv:0807.4527] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    O. Hohm, S.K. Kwak and B. Zwiebach, Double field theory of type II strings, JHEP 09 (2011) 013 [arXiv:1107.0008] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    J.W. Barrett, G. Gibbons, M. Perry, C. Pope and P. Ruback, Kleinian geometry and the N = 2 superstring, Int. J. Mod. Phys. A 9 (1994) 1457 [hep-th/9302073] [INSPIRE].MathSciNetADSGoogle Scholar
  50. [50]
    N. Obers and B. Pioline, U duality and M-theory, Phys. Rept. 318 (1999) 113 [hep-th/9809039] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • David S. Berman
    • 1
  • Hadi Godazgar
    • 2
  • Mahdi Godazgar
    • 2
  • Malcolm J. Perry
    • 2
  1. 1.Department of PhysicsQueen Mary University of LondonLondonU.K.
  2. 2.DAMTP, Centre for Mathematical Sciences, University of CambridgeCambridgeU.K.

Personalised recommendations