Advertisement

Finite volume effects in pion-kaon scattering and reconstruction of the κ(800) resonance

Article

Abstract

Simulating the κ(800) on the lattice is a challenging task that starts to become feasible due to the rapid progress in recent-years lattice QCD calculations. As the reso- nance is broad, special attention to finite-volume effects has to be paid, because no sharp resonance signal as from avoided level crossing can be expected. In the present article, we investigate the finite volume effects in the framework of unitarized chiral perturbation theory using next-to-leading order terms. After a fit to meson-meson partial wave data, lattice levels for πK scattering are predicted. In addition, levels are shown for the quantum numbers in which the σ(600), f 0(980), a 0(980), φ(1020), K * (892), and ρ(770) appear, as well as the repulsive channels. Methods to extract the κ(800) signal from the lattice spec- trum are presented. Using pseudo-data, we estimate the precision that lattice data should have to allow for a clear-cut extraction of this resonance. To put the results into con- text, in particular the required high precision on the lattice data, the σ(600), the P -wave resonances K * (892) and ρ(770), and the repulsive πK, ππ phases are analyzed as well.

Keywords

Lattice QCD NLO Computations Chiral Lagrangians 

References

  1. [1]
    S. Dürr et al., Ab-Initio Determination of Light Hadron Masses, Science 322 (2008) 1224 [arXiv:0906.3599] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    European Twisted Mass collaboration, B. Blossier et al., Light quark masses and pseudoscalar decay constants from N (f) = 2 Lattice QCD with twisted mass fermions, JHEP 04 (2008) 020 [arXiv:0709.4574] [INSPIRE].Google Scholar
  3. [3]
    Hadron Spectrum collaboration, H.-W. Lin et al., First results from 2 + 1 dynamical quark flavors on an anisotropic lattice: Light-hadron spectroscopy and setting the strange-quark mass, Phys. Rev. D 79 (2009) 034502 [arXiv:0810.3588] [INSPIRE].ADSGoogle Scholar
  4. [4]
    QCDSF collaboration, M. Göckeler et al., Extracting the rho resonance from lattice QCD simulations at small quark masses, PoS(LATTICE 2008)136 [arXiv:0810.5337] [INSPIRE].
  5. [5]
    C. Gattringer et al., Hadron Spectroscopy with Dynamical Chirally Improved Fermions, Phys. Rev. D 79 (2009) 054501 [arXiv:0812.1681] [INSPIRE].ADSGoogle Scholar
  6. [6]
    J.J. Dudek, R.G. Edwards, M.J. Peardon, D.G. Richards and C.E. Thomas, Toward the excited meson spectrum of dynamical QCD, Phys. Rev. D 82 (2010) 034508 [arXiv:1004.4930] [INSPIRE].ADSGoogle Scholar
  7. [7]
    R. Baron et al., Light hadrons from lattice QCD with light (u, d), strange and charm dynamical quarks, JHEP 06 (2010) 111 [arXiv:1004.5284] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    BGR [Bern-Graz-Regensburg] collaboration, G.P. Engel, C. Lang, M. Limmer, D. Mohler and A. Schafer, Meson and baryon spectrum for QCD with two light dynamical quarks, Phys. Rev. D 82 (2010) 034505 [arXiv:1005.1748] [INSPIRE].ADSGoogle Scholar
  9. [9]
    X. Feng, K. Jansen and D.B. Renner, Resonance Parameters of the rho-Meson from Lattice QCD, Phys. Rev. D 83 (2011) 094505 [arXiv:1011.5288] [INSPIRE].ADSGoogle Scholar
  10. [10]
    J.J. Dudek, R.G. Edwards, M.J. Peardon, D.G. Richards and C.E. Thomas, The phase-shift of isospin-2 ππ scattering from lattice QCD, Phys. Rev. D 83 (2011) 071504 [arXiv:1011.6352] [INSPIRE].ADSGoogle Scholar
  11. [11]
    J.J. Dudek et al., Isoscalar meson spectroscopy from lattice QCD, Phys. Rev. D 83 (2011) 111502 [arXiv:1102.4299] [INSPIRE].ADSGoogle Scholar
  12. [12]
    C. Morningstar et al., Improved stochastic estimation of quark propagation with Laplacian Heaviside smearing in lattice QCD, Phys. Rev. D 83 (2011) 114505 [arXiv:1104.3870] [INSPIRE].ADSGoogle Scholar
  13. [13]
    NPLQCD collaboration, S. Beane et al., The I = 2 ππ S-wave Scattering Phase Shift from Lattice QCD, arXiv:1107.5023 [INSPIRE].
  14. [14]
    C. Morningstar et al., Excited-State Hadron Masses from Lattice QCD, arXiv:1109.0308 [INSPIRE].
  15. [15]
    C. Lang, D. Mohler, S. Prelovsek and M. Vidmar, Coupled channel analysis of the rho meson decay in lattice QCD, Phys. Rev. D 84 (2011) 054503 [arXiv:1105.5636] [INSPIRE].ADSGoogle Scholar
  16. [16]
    B.J. Menadue, W. Kamleh, D.B. Leinweber and M. Mahbub, Isolating the Λ(1405) in Lattice QCD, arXiv:1109.6716 [INSPIRE].
  17. [17]
    Z. Fu, The preliminary lattice QCD calculation of κ meson decay width, arXiv:1110.5975 [INSPIRE].
  18. [18]
    V. Bernard, U.-G. Meißner and A. Rusetsky, The Delta-resonance in a finite volume, Nucl. Phys. B 788 (2008) 1 [hep-lat/0702012] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    M. Lüscher, Volume Dependence of the Energy Spectrum in Massive Quantum Field Theories. 2. Scattering States, Commun. Math. Phys. 105 (1986) 153 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    M. Luüscher, Two particle states on a torus and their relation to the scattering matrix, Nucl. Phys. B 354 (1991) 531 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    M. Lüscher, Signatures of unstable particles in finite volume, Nucl. Phys. B 364 (1991) 237 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J. Oller, E. Oset and J. Peláez, Meson meson interaction in a nonperturbative chiral approach, Phys. Rev. D 59 (1999) 074001 [Erratum ibid. D 60 (1999) 099906] [hep-ph/9804209] [INSPIRE].ADSGoogle Scholar
  23. [23]
    J. Gasser and H. Leutwyler, Chiral Perturbation Theory to One Loop, Annals Phys. 158 (1984) 142 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    J. Gasser and H. Leutwyler, Chiral Perturbation Theory: Expansions in the Mass of the Strange Quark, Nucl. Phys. B 250 (1985) 465 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    V. Bernard, N. Kaiser and U.G. Meißner, Threshold parameters of πK scattering in QCD, Phys. Rev. D 43 (1991) 2757 [INSPIRE].ADSGoogle Scholar
  26. [26]
    V. Bernard, N. Kaiser and U.G. Meißner, πK scattering in chiral perturbation theory to one loop, Nucl. Phys. B 357 (1991) 129 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    V. Bernard, N. Kaiser and U.G. Meißner, Chiral perturbation theory in the presence of resonances: Application to πpi and πK scattering, Nucl. Phys. B 364 (1991) 283 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    J. Oller and E. Oset, Chiral symmetry amplitudes in the S wave isoscalar and isovector channels and the σ, f 0 (980), a 0 (980) scalar mesons, Nucl. Phys. A 620 (1997) 438 [Erratum ibid. A 652 (1999) 407] [hep-ph/9702314] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    J. Oller and E. Oset, N/D description of two meson amplitudes and chiral symmetry, Phys. Rev. D 60 (1999) 074023 [hep-ph/9809337] [INSPIRE].ADSGoogle Scholar
  30. [30]
    M. Jamin, J.A. Oller and A. Pich, S wave Kπ scattering in chiral perturbation theory with resonances, Nucl. Phys. B 587 (2000) 331 [hep-ph/0006045] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    M. Albaladejo and J. Oller, Identification of a Scalar Glueball, Phys. Rev. Lett. 101 (2008) 252002 [arXiv:0801.4929] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    Z.-H. Guo and J. Oller, Resonances from meson-meson scattering in U(3) ChPT, Phys. Rev. D 84 (2011) 034005 [arXiv:1104.2849] [INSPIRE].ADSGoogle Scholar
  33. [33]
    G. Janssen, B. Pearce, K. Holinde and J. Speth, On the structure of the scalar mesons f 0 (975) and a 0 (980), Phys. Rev. D 52 (1995) 2690 [nucl-th/9411021] [INSPIRE].ADSGoogle Scholar
  34. [34]
    O. Krehl, R. Rapp and J. Speth, Meson meson scattering: \(K\overline K\) thresholds and f 0 (980) − a 0 (980) mixing, Phys. Lett. B 390 (1997) 23 [nucl-th/9609013] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    A. Dobado and J. Peláez, A Global fit of ππ and πK elastic scattering in ChPT with dispersion relations, Phys. Rev. D 47 (1993) 4883 [hep-ph/9301276] [INSPIRE].ADSGoogle Scholar
  36. [36]
    J. Oller, E. Oset and J. Peláez, Nonperturbative approach to effective chiral Lagrangians and meson interactions, Phys. Rev. Lett. 80 (1998) 3452 [hep-ph/9803242] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    J. Nieves, M. Pavón Valderrama and E. Ruiz Arriola, The Inverse amplitude method in ππ scattering in chiral perturbation theory to two loops, Phys. Rev. D 65 (2002) 036002 [hep-ph/0109077] [INSPIRE].ADSGoogle Scholar
  38. [38]
    A. Gómez Nicola and J. Peláez, Meson meson scattering within one loop chiral perturbation theory and its unitarization, Phys. Rev. D 65 (2002) 054009 [hep-ph/0109056] [INSPIRE].ADSGoogle Scholar
  39. [39]
    C. Hanhart, J. Peláez and G. Rios, Quark mass dependence of the rho and sigma from dispersion relations and Chiral Perturbation Theory, Phys. Rev. Lett. 100 (2008) 152001 [arXiv:0801.2871] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    J. Nebreda and J. Peláez., Strange and non-strange quark mass dependence of elastic light resonances from SU(3) Unitarized Chiral Perturbation Theory to one loop, Phys. Rev. D 81 (2010) 054035 [arXiv:1001.5237] [INSPIRE].ADSGoogle Scholar
  41. [41]
    J. Nebreda, J. Peláez and G. Rios, Mass dependence of pion-pion phase shifts within standard and unitarized ChPT versus Lattice results, arXiv:1108.5980 [INSPIRE].
  42. [42]
    B. Ananthanarayan, G. Colangelo, J. Gasser and H. Leutwyler, Roy equation analysis of ππ scattering, Phys. Rept. 353 (2001) 207 [hep-ph/0005297] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  43. [43]
    I. Caprini, G. Colangelo, J. Gasser and H. Leutwyler, On the precision of the theoretical predictions for ππ scattering, Phys. Rev. D 68 (2003) 074006 [hep-ph/0306122] [INSPIRE].ADSGoogle Scholar
  44. [44]
    P. Büttiker, S. Descotes-Genon and B. Moussallam, A new analysis of πK scattering from Roy and Steiner type equations, Eur. Phys. J. C 33 (2004) 409 [hep-ph/0310283] [INSPIRE].ADSGoogle Scholar
  45. [45]
    S. Descotes-Genon and B. Moussallam, The \(K_0^{ * }\) (800) scalar resonance from Roy-Steiner representations of πK scattering, Eur. Phys. J. C 48 (2006) 553 [hep-ph/0607133] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    S. Descotes-Genon, Low-energy ππ and πK scatterings revisited in three-flavour resummed chiral perturbation theory, Eur. Phys. J. C 52 (2007) 141 [hep-ph/0703154] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    M. Hoferichter, D.R. Phillips and C. Schat, Roy-Steiner equations for γγ → ππ, arXiv:1108.4776 [INSPIRE].
  48. [48]
    V. Bernard, M. Lage, U.-G. Meißner and A. Rusetsky, Resonance properties from the finite-volume energy spectrum, JHEP 08 (2008) 024 [arXiv:0806.4495] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    V. Bernard, D. Hoja, U.-G. Meißner and A. Rusetsky, The Mass of the Delta resonance in a finite volume: fourth-order calculation, JHEP 06 (2009) 061 [arXiv:0902.2346] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    M. Lage, U.-G. Meißner and A. Rusetsky, A Method to measure the antikaon-nucleon scattering length in lattice QCD, Phys. Lett. B 681 (2009) 439 [arXiv:0905.0069] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    D. Hoja, U.-G. Meißner and A. Rusetsky, Resonances in an external field: The 1 + 1 dimensional case, JHEP 04 (2010) 050 [arXiv:1001.1641] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    V. Bernard, S. Descotes-Genon and G. Toucas, Chiral dynamics with strange quarks in the light of recent lattice simulations, JHEP 01 (2011) 107 [arXiv:1009.5066] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    V. Bernard, M. Lage, U.-G. Meißner and A. Rusetsky, Scalar mesons in a finite volume, JHEP 01 (2011) 019 [arXiv:1010.6018] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    M. Döring, U.-G. Meißner, E. Oset and A. Rusetsky, Unitarized Chiral Perturbation Theory in a finite volume: Scalar meson sector, Eur. Phys. J. A 47 (2011) 139 [arXiv:1107.3988] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    A. Torres, L. Dai, C. Koren, D. Jido and E. Oset, The K D, ηD s interaction in finite volume and the \({D_{{{s^{ * }}0}}}\) (2317) resonance, arXiv:1109.0396 [INSPIRE].
  56. [56]
    T. Luu and M.J. Savage, Extracting Scattering Phase-Shifts in Higher Partial-Waves from Lattice QCD Calculations, Phys. Rev. D 83 (2011) 114508 [arXiv:1101.3347] [INSPIRE].ADSGoogle Scholar
  57. [57]
    M. Döring, C. Hanhart, F. Huang, S. Krewald, U.-G. Meißner and D. Rönchen, The reaction \({\pi^{ + }}p \to {K^{ + }}{\Sigma^{ + }}\) in a unitary coupled-channels model, Nucl. Phys. A 851 (2011) 58 [arXiv:1009.3781] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    M. Döring, J. Haidenbauer, U.-G. Meißner and A. Rusetsky, Dynamical coupled-channel approaches on a momentum lattice, Eur. Phys. J. A 47 (2011) 163 [arXiv:1108.0676] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    D. Black, A.H. Fariborz, F. Sannino and J. Schechter, Evidence for a scalar κ(900) resonance in πK scattering, Phys. Rev. D 58 (1998) 054012 [hep-ph/9804273] [INSPIRE].ADSGoogle Scholar
  61. [61]
    E791 collaboration, E. Aitala et al., Dalitz plot analysis of the decay \({D^{ + }} \to {K^{ - }}{\pi^{ + }}{\pi^{ + }}\) and indication of a low-mass scalar Kπ resonance, Phys. Rev. Lett. 89 (2002) 121801 [hep-ex/0204018] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    BES collaboration, M. Ablikim et al., The sigma pole in \(J/\psi \to \omega {\pi^{ + }}{\pi^{ - }}\), Phys. Lett. B 598 (2004) 149 [hep-ex/0406038] [INSPIRE].ADSGoogle Scholar
  63. [63]
    H. Zheng, Z. Zhou, G. Qin, Z. Xiao, J. Wang and N. Wu, The kappa resonance in s wave πK scatterings, Nucl. Phys. A 733 (2004) 235 [hep-ph/0310293] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    D. Bugg, The Kappa in E791 data for DK ππ, Phys. Lett. B 632 (2006) 471 [hep-ex/0510019] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    V. Bernard and E. Passemar, Matching chiral perturbation theory and the dispersive representation of the scalar K π form-factor, Phys. Lett. B 661 (2008) 95 [arXiv:0711.3450] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    K. Kampf and B. Moussallam, Chiral expansions of the π 0 lifetime, Phys. Rev. D 79 (2009) 076005 [arXiv:0901.4688] [INSPIRE].ADSGoogle Scholar
  67. [67]
    C. Froggatt and J. Petersen, Phase Shift Analysis of π + π Scattering Between 1.0 GeV and 1.8 GeV Based on Fixed Momentum Transfer Analyticity. 2., Nucl. Phys. B 129 (1977) 89 [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    NA48/2 collaboration, J. Batley et al., New high statistics measurement of K(e4) decay form factors and ππ scattering phase shifts, Eur. Phys. J. C 54 (2008) 411 [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    D. Aston et al., A Study of K π + Scattering in the Reaction \({K^{ - }}p \to {K^{ - }}{\pi^{ + }}n\) at 11-GeV/c, Nucl. Phys. B 296 (1988) 493 [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    D. Linglin et al., K π elastic scattering cross-section measured in 14.3 GeV/c k p interactions, Nucl. Phys. B 57 (1973) 64 [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    P. Estabrooks, R. Carnegie, A.D. Martin, W. Dunwoodie, T. Lasinski and D.W.G.S. Leith, Study of Kπ Scattering Using the Reactions \({K^{\pm }}p \to {K^{\pm }}{\pi^{ + }}n\) and \({K^{\pm }}p \to {K^{\pm }}{\pi^{ - }}{\Delta^{{ + + }}}\) at 13 GeV/c, Nucl. Phys. B 133 (1978) 490 [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    L. Rosselet et al., Experimental Study of 30,000 K(e4) Decays, Phys. Rev. D 15 (1977) 574 [INSPIRE].ADSGoogle Scholar
  73. [73]
    A. Schenk, Absorption and dispersion of pions at finite temperature, Nucl. Phys. B 363 (1991) 97 [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    R. Mercer et al., Kπ scattering phase shifts determined from the reactions \({K^{ + }}p \to {K^{ + }}{\pi^{ - }}{\Delta^{{ + + }}}\) and \({K^{ + }}p \to {K^0}{\pi^0}{\Delta^{{ + + }}}\), Nucl. Phys. B 32 (1971) 381.ADSCrossRefGoogle Scholar
  75. [75]
    P. Estabrooks and A.D. Martin, ππ Phase Shift Analysis Below the \(K\overline K\) Threshold, Nucl. Phys. B 79 (1974) 301 [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    S. Lindenbaum and R. Longacre, Coupled channel analysis of J(PC) = 0++ and 2++ isoscalar mesons with masses below 2 GeV, Phys. Lett. B 274 (1992) 492 [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    A.D. Martin and E. Ozmutlu, Analyses of \(K\overline K\) production and scalar meson, Nucl. Phys. B 158 (1979) 520 [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    D.H. Cohen, D. Ayres, R. Diebold, S. Kramer, A. Pawlicki and A.B. Wicklund, Amplitude Analysis of the K K + System Produced in the Reactions \({\pi^{ - }}p \to {K^{ - }}{K^{ + }}n\) and \({\pi^{ + }}n \to {K^{ - }}{K^{ + }}p\) at 6 GeV/c, Phys. Rev. D 22 (1980) 2595 [INSPIRE].ADSGoogle Scholar
  79. [79]
    A. Etkin et al., Amplitude Analysis of the \(K_s^0{ }K_s^0\) System Produced in the Reaction \({\pi^{ - }}p \to K_s^0{ }K_s^0n\) at 23 GeV/c, Phys. Rev. D 25 (1982) 1786 [INSPIRE].ADSGoogle Scholar
  80. [80]
    80] WA76 Collaboration, Athens-Bari-Birmingham-CERN-College de France collaboration, T. Armstrong et al., Study of the ηπ + π system centrally produced in the reaction ppp(f)(ηπ + π ) p(s) at 300 GeV/c, Z. Phys. C 52 (1991) 389 [INSPIRE].ADSGoogle Scholar
  81. [81]
    M. Döring, C. Hanhart, F. Huang, S. Krewald and U.-G. Meißner, Analytic properties of the scattering amplitude and resonances parameters in a meson exchange model, Nucl. Phys. A 829 (2009) 170 [arXiv:0903.4337] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    S. König, D. Lee and H.-W. Hammer, Volume Dependence of Bound States with Angular Momentum, Phys. Rev. Lett. 107 (2011) 112001 [arXiv:1103.4468] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    S. König, D. Lee and H.-W. Hammer, Non-relativistic bound states in a finite volume, arXiv:1109.4577 [INSPIRE].
  84. [84]
    S. Beane, P. Bedaque, A. Parreño and M. Savage, Two nucleons on a lattice, Phys. Lett. B 585 (2004) 106 [hep-lat/0312004] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical PhysicsUniversität BonnBonnGermany
  2. 2.Forschungszentrum Jülich, Institut für Kernphysik, Institute for Advanced Simulation and Jülich Center for Hadron PhysicsJülichGermany

Personalised recommendations