Advertisement

Journal of High Energy Physics

, 2011:156 | Cite as

Searching for third-generation composite leptoquarks at the LHC

  • Ben Gripaios
  • Andreas Papaefstathiou
  • Kazuki Sakurai
  • Bryan Webber
Open Access
Article

Abstract

Fermion masses may arise via mixing of elementary fermions with composite fermions of a strong sector in scenarios of strongly-coupled electroweak symmetry breaking. The strong sector may contain leptoquark states with masses as light as several hundred GeV. In the present study we focus on the scalar modes of such leptoquarks since their bosonic couplings are determined completely and hence their production cross sections only depend on their masses. We study all the possible gauge-invariant non-derivative and single-derivative couplings of the scalar leptoquarks to the quarks and leptons, which turn out to be, predominantly, of the third generation. We examine their phenomenology and outline search strategies for their dominant decay modes at the LHC.

Keywords

Beyond Standard Model Hadronic Colliders Technicolor and Composite Models 

References

  1. [1]
    M.A. Luty and T. Okui, Conformal technicolor, JHEP 09 (2006) 070 [hep-ph/0409274] [SPIRES].CrossRefADSGoogle Scholar
  2. [2]
    R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP 12 (2008) 031 [arXiv:0807.0004] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  3. [3]
    V.S. Rychkov and A. Vichi, Universal constraints on conformal operator dimensions, Phys. Rev. D 80 (2009) 045006 [arXiv:0905.2211] [SPIRES].MathSciNetADSGoogle Scholar
  4. [4]
    R. Rattazzi, S. Rychkov and A. Vichi, Bounds in 4D conformal field theories with global symmetry, J. Phys. A 44 (2011) 035402 [arXiv:1009.5985] [SPIRES].ADSMathSciNetGoogle Scholar
  5. [5]
    D.B. Kaplan, Flavor at SSC energies: a new mechanism for dynamically generated fermion masses, Nucl. Phys. B 365 (1991) 259 [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    B. Gripaios, Composite leptoquarks at the LHC, JHEP 02 (2010) 045 [arXiv:0910.1789] [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    S. Davidson and S. Descotes-Genon, Minimal flavour violation for leptoquarks, arXiv:1009.1998 [SPIRES].
  8. [8]
    D0 collaboration, V.M. Abazov et al., Search for third generation scalar leptoquarks decaying into τb, Phys. Rev. Lett. 101 (2008) 241802 [arXiv:0806.3527] [SPIRES].CrossRefADSGoogle Scholar
  9. [9]
    D0 collaboration, V.M. Abazov et al., Search for third-generation leptoquarks in \( p\overline p \) collisions at \( \sqrt {s} = 1.96 \) TeV, Phys. Rev. Lett. 99 (2007) 061801 [arXiv:0705.0812] [SPIRES].CrossRefADSGoogle Scholar
  10. [10]
    M. Bahr et al., Herwig+ + physics and manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [SPIRES].CrossRefADSGoogle Scholar
  11. [11]
    M. Bahr et al., Herwig+ + 2.3 release note, arXiv:0812.0529 [SPIRES].
  12. [12]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, Pythia 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief Introduction to Pythia 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [SPIRES].zbMATHCrossRefADSGoogle Scholar
  14. [14]
    T. Sjöstrand, P yt hia 8 status report, arXiv:0809.0303 [SPIRES].
  15. [15]
    J. Blumlein, E. Boos and A. Kryukov, Leptoquark pair production in hadronic interactions, Z. Phys. C 76 (1997) 137 [hep-ph/9610408] [SPIRES].Google Scholar
  16. [16]
    A. Belyaev, C. Leroy, R. Mehdiyev and A. Pukhov, Leptoquark single and pair production at LHC with CalcHEP/CompHEP in the complete model, JHEP 09 (2005) 005 [hep-ph/0502067] [SPIRES].CrossRefADSGoogle Scholar
  17. [17]
    C.G. Lester and D.J. Summers, Measuring masses of semiinvisibly decaying particles pair produced at hadron colliders, Phys. Lett. B 463 (1999) 99 [hep-ph/9906349] [SPIRES].ADSGoogle Scholar
  18. [18]
    S. Ovyn, X. Rouby and V. Lemaitre, Delphes, a framework for fast simulation of a generic collider experiment, arXiv:0903.2225 [SPIRES].
  19. [19]
    ATLAS collaboration, G. Aad et al., Expected performance of the ATLAS experiment — detector, trigger and physics, arXiv:0901.0512 [SPIRES].
  20. [20]
    M. Serna, A short comparison between M T2 and M CT, JHEP 06 (2008) 004 [arXiv:0804.3344] [SPIRES].CrossRefADSGoogle Scholar
  21. [21]
    H.-C. Cheng and Z. Han, Minimal kinematic constraints and M T2, JHEP 12 (2008) 063 [arXiv:0810.5178] [SPIRES].CrossRefADSGoogle Scholar
  22. [22]
    A.J. Barr, B. Gripaios and C.G. Lester, Transverse masses and kinematic constraints: from the boundary to the crease, JHEP 11 (2009) 096 [arXiv:0908.3779] [SPIRES].CrossRefADSGoogle Scholar
  23. [23]
    M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP 07 (2003) 001 [hep-ph/0206293] [SPIRES].CrossRefADSGoogle Scholar
  24. [24]
    J. Shelton, Polarized tops from new physics: signals and observables, Phys. Rev. D 79 (2009) 014032 [arXiv:0811.0569] [SPIRES].ADSGoogle Scholar
  25. [25]
    R.M. Godbole, S.D. Rindani and R.K. Singh, Lepton distribution as a probe of new physics in production and decay of the t quark and its polarization, JHEP 12 (2006) 021 [hep-ph/0605100] [SPIRES].CrossRefADSGoogle Scholar
  26. [26]
    R.H. Dalitz and G.R. Goldstein, The decay and polarization properties of the top quark, Phys. Rev. D 45 (1992) 1531 [SPIRES].ADSGoogle Scholar
  27. [27]
    M. Guchait and D.P. Roy, Using τpolarization for charged Higgs boson and SUSY searches at LHC, arXiv:0808.0438 [SPIRES].
  28. [28]
    R.M. Godbole, M. Guchait and D.P. Roy, Using τ polarization to probe the stau co-annihilation region of mSUGRA model at LHC, Phys. Rev. D 79 (2009) 095015 [arXiv:0807.2390] [SPIRES].CrossRefADSGoogle Scholar
  29. [29]
    I. Low, R. Rattazzi and A. Vichi, T heoretical constraints on the Higgs effective couplings, JHEP 04 (2010) 126 [arXiv:0907.5413] [SPIRES].CrossRefADSGoogle Scholar
  30. [30]
    B. Gripaios, A. Pomarol, F. Riva and J. Serra, Beyond the minimal composite Higgs model, JHEP 04 (2009) 070 [arXiv:0902.1483] [SPIRES].CrossRefADSGoogle Scholar
  31. [31]
    G.P. Lepage, VEGAS: an adaptive multidimensional integration program, CLNS-80/447, Cornell University, Ithaca U.S.A. [SPIRES].
  32. [32]
    A. Sherstnev and R.S. Thorne, Parton distributions for LO generators, Eur. Phys. J. C 55 (2008) 553 [arXiv:0711.2473] [SPIRES].CrossRefADSGoogle Scholar
  33. [33]
    H.K. Dreiner, H.E. Haber and S.P. Martin, Two-component spinor techniques and Feynman rules for quantum field theory and supersymmetry, Phys. Rept. 494 (2010) 1 [arXiv:0812.1594] [SPIRES].CrossRefMathSciNetADSGoogle Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Ben Gripaios
    • 1
  • Andreas Papaefstathiou
    • 2
  • Kazuki Sakurai
    • 2
    • 3
  • Bryan Webber
    • 2
  1. 1.CERN PH-THGeneva 23Switzerland
  2. 2.Cavendish LaboratoryUniversity of CambridgeCambridgeU.K.
  3. 3.Department of Applied Mathematics and Theoretical PhysicsUniversity of CambridgeCambridgeU.K.

Personalised recommendations