Journal of High Energy Physics

, 2011:152 | Cite as

Probing gluon and heavy-quark nuclear PDFs with γ + Q production in pA collisions

  • T. Stavreva
  • I. Schienbein
  • F. Arleo
  • K. Kovařík
  • F. Olness
  • J. Y. Yu
  • J. F. Owens
Open Access
Article

Abstract

We present a detailed phenomenological study of direct photon production in association with a heavy-quark jet in pA collisions at the Relativistic Heavy Ion Collider (RHIC) and at the Large Hadron Collider (LHC) at next-to-leading order in QCD. The dominant contribution to the cross-section comes from the gluon-heavy-quark (gQ) initiated subprocess, making γ + Q production a process very sensitive to both the gluon and the heavy-quark parton distribution functions (PDFs). Additionally, the RHIC and LHC experiments are probing complementary kinematic regions in the momentum fraction x carried by the target partons. Thus, the nuclear production ratio \( R_{pA}^{\gamma + Q} \) can provide strong constraints, over a broad x-range, on the poorly determined nuclear parton distribution functions which are extremely important for the interpretation of results in heavy-ion collisions.

Keywords

QCD Phenomenology 

References

  1. [1]
    P.M. Nadolsky et al., Implications of CTEQ global analysis for collider observables, Phys. Rev. D 78 (2008) 013004 [arXiv:0802.0007] [SPIRES].ADSGoogle Scholar
  2. [2]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [SPIRES].CrossRefADSGoogle Scholar
  3. [3]
    The NNPDF collaboration, R.D. Ball et al., Precision determination of electroweak parameters and the strange content of the proton from neutrino deep-inelastic scattering, Nucl. Phys. B 823 (2009) 195 [arXiv:0906.1958] [SPIRES].CrossRefADSGoogle Scholar
  4. [4]
    NNPDF collaboration, R.D. Ball et al., A determination of parton distributions with faithful uncertainty estimation, Nucl. Phys. B 809 (2009) 1 [arXiv:0808.1231] [SPIRES].CrossRefADSGoogle Scholar
  5. [5]
    P. Jimenez-Delgado and E. Reya, Dynamical NNLO parton distributions, Phys. Rev. D 79 (2009) 074023 [arXiv:0810.4274] [SPIRES].ADSGoogle Scholar
  6. [6]
    P. Jimenez-Delgado and E. Reya, Variable Flavor Number Parton Distributions and Weak Gauge and Higgs Boson Production at Hadron Colliders at NNLO of QCD, Phys. Rev. D 80 (2009) 114011 [arXiv:0909.1711] [SPIRES].ADSGoogle Scholar
  7. [7]
    S. Alekhin, J. Blumlein and S.-O. Moch, Update of the NNLO PDFs in the 3-, 4- and 5-flavour scheme, PoS(DIS2010)021 [arXiv:1007.3657] [SPIRES].
  8. [8]
    S. Alekhin, J. Blumlein, S. Klein and S. Moch, The 3-, 4- and 5-flavor NNLO Parton from Deep-Inelastic-Scattering Data and at Hadron Colliders, Phys. Rev. D 81 (2010) 014032 [arXiv:0908.2766] [SPIRES].MATHADSGoogle Scholar
  9. [9]
    I. Schienbein et al., Nuclear PDFs from neutrino deep inelastic scattering, Phys. Rev. D 77 (2008) 054013 [arXiv:0710.4897] [SPIRES].ADSGoogle Scholar
  10. [10]
    I. Schienbein et al., PDF Nuclear Corrections for Charged and Neutral Current Processes, Phys. Rev. D 80 (2009) 094004 [arXiv:0907.2357] [SPIRES].ADSGoogle Scholar
  11. [11]
    K. Kovarik et al., Nuclear corrections in neutrino-nucleus DIS and their compatibility with global NPDF analyses, arXiv:1012.0286 [SPIRES].
  12. [12]
    D. de Florian and R. Sassot, Nuclear parton distributions at next to leading order, Phys. Rev. D 69 (2004) 074028 [hep-ph/0311227] [SPIRES].ADSGoogle Scholar
  13. [13]
    K.J. Eskola, V.J. Kolhinen and C.A. Salgado, The scale dependent nuclear effects in parton distributions for practical applications, Eur. Phys. J. C9 (1999) 61 [hep-ph/9807297] [SPIRES].ADSGoogle Scholar
  14. [14]
    K.J. Eskola, H. Paukkunen and C.A. Salgado, An improved global analysis of nuclear parton distribution functions including RHIC data, JHEP 07 (2008) 102 [arXiv:0802.0139] [SPIRES].CrossRefADSGoogle Scholar
  15. [15]
    K.J. Eskola, H. Paukkunen and C.A. Salgado, EPS09 - a New Generation of NLO and LO Nuclear Parton Distribution Functions, JHEP 04 (2009) 065 [arXiv:0902.4154] [SPIRES].CrossRefADSGoogle Scholar
  16. [16]
    M. Hirai, S. Kumano and M. Miyama, Determination of nuclear parton distributions, Phys. Rev. D 64 (2001) 034003 [hep-ph/0103208] [SPIRES].ADSGoogle Scholar
  17. [17]
    M. Hirai, S. Kumano and T.H. Nagai, Nuclear parton distribution functions and their uncertainties, Phys. Rev. C 70 (2004) 044905 [hep-ph/0404093] [SPIRES].ADSGoogle Scholar
  18. [18]
    M. Hirai, S. Kumano and T.H. Nagai, Determination of nuclear parton distribution functions and their uncertainties at next-to-leading order, Phys. Rev. C 76 (2007) 065207 [arXiv:0709.3038] [SPIRES].ADSGoogle Scholar
  19. [19]
    N. Armesto, Nuclear shadowing, J. Phys. G 32 (2006) R367 [hep-ph/0604108] [SPIRES].Google Scholar
  20. [20]
    H. Paukkunen and C.A. Salgado, Constraints for the nuclear parton distributions from Z and W production at the LHC, arXiv:1010.5392 [SPIRES].
  21. [21]
    F. Arleo and T. Gousset, Measuring gluon shadowing with prompt photons at RHIC and LHC, Phys. Lett. B 660 (2008) 181 [arXiv:0707.2944] [SPIRES].ADSGoogle Scholar
  22. [22]
    P. Quiroga-Arias, J.G. Milhano and U.A. Wiedemann, Testing nuclear parton distributions with pA collisions at the TeV scale, Phys. Rev. C 82 (2010) 034903 [arXiv:1002.2537] [SPIRES].ADSGoogle Scholar
  23. [23]
    K.J. Eskola, V.J. Kolhinen and R. Vogt, Obtaining the nuclear gluon distribution from heavy quark decays to lepton pairs in pA collisions, Nucl. Phys. A 696 (2001) 729 [hep-ph/0104124] [SPIRES].ADSGoogle Scholar
  24. [24]
    C. Brenner Mariotto and M.V.T. Machado, Quarkonium plus prompt-photon associated hadroproduction and nuclear shadowing, Eur. Phys. J. C 67 (2010) 455 [arXiv:0907.4801] [SPIRES].CrossRefADSGoogle Scholar
  25. [25]
    J.P. Lansberg, J/ψ, ψ ’ and Υ production at hadron colliders: A Review, Int. J. Mod. Phys. A 21 (2006) 3857 [hep-ph/0602091] [SPIRES].ADSGoogle Scholar
  26. [26]
    F. Arleo, Constraints on nuclear gluon densities from J/ψ data, Phys. Lett. B 666 (2008) 31 [arXiv:0804.2802] [SPIRES].ADSGoogle Scholar
  27. [27]
    M.A. Betemps and M.V.T. Machado, Photon plus heavy quark production in high energy collisions within the target rest frame formalism, Phys. Rev. D 82 (2010) 094025 [arXiv:1010.4738] [SPIRES].ADSGoogle Scholar
  28. [28]
    T.P. Stavreva and J.F. Owens, Direct Photon Production in Association With A Heavy Quark At Hadron Colliders, Phys. Rev. D 79 (2009) 054017 [arXiv:0901.3791] [SPIRES].ADSGoogle Scholar
  29. [29]
    T. Stavreva, Direct photon production in association with a heavy quark, PhD thesis, Florida State University (2009) [URN: etd-04102009-155714].Google Scholar
  30. [30]
    P. Aurenche, R. Baier, M. Fontannaz, J.F. Owens and M. Werlen, The Gluon Contents of the Nucleon Probed with Real and Virtual Photons, Phys. Rev. D 39 (1989) 3275 [SPIRES].ADSGoogle Scholar
  31. [31]
    J.F. Owens, Large Momentum Transfer Production of Direct Photons, Jets, and Particles, Rev. Mod. Phys. 50 (1987) 465.CrossRefADSGoogle Scholar
  32. [32]
    F. Arleo, Hard pion and prompt photon at RHIC, from single to double inclusive production, JHEP 09 (2006) 015 [hep-ph/0601075] [SPIRES].CrossRefADSGoogle Scholar
  33. [33]
    L. Bourhis, M. Fontannaz and J.P. Guillet, Quark and gluon fragmentation functions into photons, Eur. Phys. J. C 2 (1998) 529 [hep-ph/9704447] [SPIRES].ADSGoogle Scholar
  34. [34]
    D. Stump et al., Inclusive jet production, parton distributions and the search for new physics, JHEP 10 (2003) 046 [hep-ph/0303013] [SPIRES].CrossRefADSGoogle Scholar
  35. [35]
    A.D. Martin, R.G. Roberts, W.J. Stirling and R.S. Thorne, Parton distributions: A New global analysis, Eur. Phys. J. C4 (1998) 463 [hep-ph/9803445] [SPIRES].CrossRefADSGoogle Scholar
  36. [36]
    J.F. Owens et al., The Impact of new neutrino DIS and Drell-Yan data on large-x parton distributions, Phys. Rev. D 75 (2007) 054030 [hep-ph/0702159] [SPIRES].ADSGoogle Scholar
  37. [37]
    T. Gousset and H.J. Pirner, The Ratio of Gluon Distributions in Sn and C, Phys. Lett. B 375 (1996) 349 [hep-ph/9601242] [SPIRES].ADSGoogle Scholar
  38. [38]
    New Muon collaboration, M. Arneodo et al., The A dependence of the nuclear structure function ratios, Nucl. Phys. B 481 (1996) 3 [SPIRES].ADSGoogle Scholar
  39. [39]
    G. Altarelli and G. Parisi, Asymptotic Freedom in Parton Language, Nucl. Phys. B 126 (1977) 298 [SPIRES].CrossRefADSGoogle Scholar
  40. [40]
    V.N. Gribov and L.N. Lipatov, Deep inelastic e p scattering in perturbation theory, Sov. J. Nucl. Phys. 15 (1972) 438 [SPIRES].Google Scholar
  41. [41]
    Y.L. Dokshitzer, Calculation of the Structure Functions for Deep Inelastic Scattering and e + e Annihilation by Perturbation Theory in Quantum Chromodynamics, Sov. Phys. JETP 46 (1977) 641 [SPIRES].ADSGoogle Scholar
  42. [42]
    J.C. Collins and W.-K. Tung, Calculating Heavy Quark Distributions, Nucl. Phys. B 278 (1986) 934 [SPIRES].CrossRefADSGoogle Scholar
  43. [43]
    M. Buza, Y. Matiounine, J. Smith and W.L. van Neerven, Charm electroproduction viewed in the variable-flavour number scheme versus fixed-order perturbation theory, Eur. Phys. J. C 1 (1998) 301 [hep-ph/9612398] [SPIRES].ADSGoogle Scholar
  44. [44]
    S.J. Brodsky, P. Hoyer, C. Peterson and N. Sakai, The Intrinsic Charm of the Proton, Phys. Lett. B 93 (1980) 451 [SPIRES].ADSGoogle Scholar
  45. [45]
    S.J. Brodsky, C. Peterson and N. Sakai, Intrinsic Heavy Quark States, Phys. Rev. D 23 (1981) 2745 [SPIRES].ADSGoogle Scholar
  46. [46]
    J. Pumplin, Light-Cone Models for Intrinsic Charm and Bottom, Phys. Rev. D 73 (2006) 114015 [hep-ph/0508184] [SPIRES].ADSGoogle Scholar
  47. [47]
    J. Pumplin, H.L. Lai and W.K. Tung, The Charm Parton Content of the Nucleon, Phys. Rev. D 75 (2007) 054029 [hep-ph/0701220] [SPIRES].ADSGoogle Scholar
  48. [48]
    PHENIX collaboration, K. Okada, Measurement of prompt photons in \( \sqrt {s} = 200\;GeV \) pp collisions, hep-ex/0501066 [SPIRES].
  49. [49]
    G. Kramer and B. Potter, Low Q 2 Jet Production at HERA in Next-to-Leading Order QCD, Eur. Phys. J C 5 (1998) 665 [hep-ph/9804352] [SPIRES].ADSGoogle Scholar
  50. [50]
    S. Catani, M. Fontannaz, J.P. Guillet and E. Pilon, Cross-section of isolated prompt photons in hadron hadron collisions, JHEP 05 (2002) 028 [hep-ph/0204023] [SPIRES].CrossRefADSGoogle Scholar
  51. [51]
    A.D. Frawley, F. Karsch, T. Ullrich and R. Vogt, Heavy Flavor Working Group Report, http://rhicii-science.bnl.gov/heavy/ (2006).
  52. [52]
    G. Conesa, H. Delagrange, J. Diaz, Y.V. Kharlov and Y. Schutz, Prompt photon identification in the ALICE experiment: The isolation cut method, Nucl. Instrum. Meth. A 580 (2007) 1446 [SPIRES].ADSGoogle Scholar
  53. [53]
    G. Conesa, H. Delagrange, J. Diaz, Y.V. Kharlov and Y. Schutz, Identification of photon-tagged jets in the ALICE experiment, Nucl. Instrum. Meth. A 585 (2008) 28 [arXiv:0711.2431] [SPIRES].ADSGoogle Scholar
  54. [54]
    J. Faivre, private communication.Google Scholar
  55. [55]
    ALICE EMCal collaboration, U. Abeysekara et al., ALICE EMCal Physics Performance Report, arXiv:1008.0413 [SPIRES].
  56. [56]
    ALICE collaboration, K. Aamodt et al., The ALICE experiment at the CERN LHC, 2008 JINST 3 S08002 [SPIRES].
  57. [57]
    ALICE collaboration, M. Cinausero et al., ALICE: Physics performance report, volume I, J. Phys. G 30 (2004) 1517 [SPIRES].ADSGoogle Scholar
  58. [58]
    B. Alessandro, et al., ALICE: Physics performance report, volume II, J. Phys. G 32 (2006) 1295 [SPIRES].ADSGoogle Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • T. Stavreva
    • 1
  • I. Schienbein
    • 1
  • F. Arleo
    • 2
  • K. Kovařík
    • 3
  • F. Olness
    • 4
  • J. Y. Yu
    • 4
  • J. F. Owens
    • 5
  1. 1.Laboratoire de Physique Subatomique et de Cosmologie, UJF, CNRS/IN2P3, INPGGrenobleFrance
  2. 2.Laboratoire d’Annecy-le-Vieux de Physique Théorique (LAPTH), UMR5108Université de Savoie, CNRSAnnecy-le-Vieux cedexFrance
  3. 3.Karlsruhe Institute of Technology (KIT), Fakultät für PhysikInstitut für Theoretische Physik (IThP)KarlsruheGermany
  4. 4.Southern Methodist UniversityDallasU.S.A.
  5. 5.Florida State UniversityTallahasseeU.S.A.

Personalised recommendations