Advertisement

Journal of High Energy Physics

, 2011:137 | Cite as

The particle number in Galilean holography

  • Koushik BalasubramanianEmail author
  • John McGreevy
Article

Abstract

Recently, gravity duals for certain Galilean-invariant conformal field theories have been constructed. In this paper, we point out that the spectrum of the particle number operator in the examples found so far is not a necessary consequence of the existence of a gravity dual. We record some progress towards more realistic spectra. In particular, we construct bulk systems with asymptotic Schrödinger symmetry and only one extra dimension. In examples, we find solutions which describe these Schrödinger-symmetric systems at finite density. A lift to M-theory is used to resolve a curvature singularity. As a happy byproduct of this analysis, we realize a state which could be called a holographic Mott insulator.

Keywords

AdS-CFT Correspondence Holography and condensed matter physics (AdS/CMT) 

References

  1. [1]
    D.T. Son, Toward an AdS/cold atoms correspondence: a geometric realization of the Schrödinger symmetry, Phys. Rev. D 78 (2008) 046003 [arXiv:0804.3972] [SPIRES].MathSciNetADSGoogle Scholar
  2. [2]
    K. Balasubramanian and J. McGreevy, Gravity duals for non-relativistic CFTs, Phys. Rev. Lett. 101 (2008) 061601 [arXiv:0804.4053] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  3. [3]
    T. Mehen, I.W. Stewart and M.B. Wise, Conformal invariance for non-relativistic field theory, Phys. Lett. B 474 (2000) 145 [hep-th/9910025] [SPIRES].MathSciNetADSGoogle Scholar
  4. [4]
    Y. Nishida and D.T. Son, Nonrelativistic conformal field theories, Phys. Rev. D 76 (2007) 086004 [arXiv:0706.3746] [SPIRES].MathSciNetADSGoogle Scholar
  5. [5]
    J.M. Maldacena, D. Martelli and Y. Tachikawa, Comments on string theory backgrounds with non-relativistic conformal symmetry, JHEP 10 (2008) 072 [arXiv:0807.1100] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  6. [6]
    C.P. Herzog, M. Rangamani and S.F. Ross, Heating up Galilean holography, JHEP 11 (2008) 080 [arXiv:0807.1099] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  7. [7]
    A. Adams, K. Balasubramanian and J. McGreevy, Hot spacetimes for cold atoms, JHEP 11 (2008) 059 [arXiv:0807.1111] [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    P. Kovtun and D. Nickel, Black holes and non-relativistic quantum systems, Phys. Rev. Lett. 102 (2009) 011602 [arXiv:0809.2020] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  9. [9]
    S.A. Hartnoll and K. Yoshida, Families of IIB duals for nonrelativistic CFTs, JHEP 12 (2008) 071 [arXiv:0810.0298] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  10. [10]
    E. O’Colgain and H. Yavartanoo, NR CFT 3 duals in M-theory, JHEP 09 (2009) 002 [arXiv:0904.0588] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  11. [11]
    N. Bobev, A. Kundu and K. Pilch, Supersymmetric IIB solutions with Schrödinger symmetry, JHEP 07 (2009) 107 [arXiv:0905.0673] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  12. [12]
    A. Donos and J.P. Gauntlett, Solutions of type IIB and D = 11 supergravity with Schrödinger(z) symmetry, JHEP 07 (2009) 042 [arXiv:0905.1098] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  13. [13]
    H. Ooguri and C.-S. Park, Supersymmetric non-relativistic geometries in M-theory, Nucl. Phys. B 824 (2010) 136 [arXiv:0905.1954] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  14. [14]
    E. O’Colgain, O. Varela and H. Yavartanoo, Non-relativistic M-theory solutions based on Kähler-Einstein spaces, JHEP 07 (2009) 081 [arXiv:0906.0261] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  15. [15]
    A. Donos and J.P. Gauntlett, Schrödinger invariant solutions of type IIB with enhanced supersymmetry, JHEP 10 (2009) 073 [arXiv:0907.1761] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  16. [16]
    J. Jeong, H.-C. Kim, S. Lee, E. O’Colgain and H. Yavartanoo, Schrödinger invariant solutions of M-theory with enhanced supersymmetry, JHEP 03 (2010) 034 [arXiv:0911.5281] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  17. [17]
    H.H. Bateman, The mathematical analysis of electric and optical wave-motion, Dover, New York U.S.A. (1955).Google Scholar
  18. [18]
    C. Duval, G. Burdet, H.P. Kunzle and M. Perrin, Bargmann structures and Newton-Cartan theory, Phys. Rev. D 31 (1985) 1841 [SPIRES].MathSciNetADSGoogle Scholar
  19. [19]
    C. Duval, G.W. Gibbons and P. Horvathy, Celestial mechanics, conformal structures and gravitational waves, Phys. Rev. D 43 (1991) 3907 [hep-th/0512188] [SPIRES].MathSciNetADSGoogle Scholar
  20. [20]
    R. Britto-Pacumio, A. Strominger and A. Volovich, Holography for coset spaces, JHEP 11 (1999) 013 [hep-th/9905211] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  21. [21]
    M. Taylor, Holography for degenerate boundaries, hep-th/0001177 [SPIRES].
  22. [22]
    D. Yamada, Thermodynamics of black holes in Schrödinger space, Class. Quant. Grav. 26 (2009) 075006 [arXiv:0809.4928] [SPIRES].CrossRefADSGoogle Scholar
  23. [23]
    J.L.F. Barbon and C.A. Fuertes, Ideal gas matching for thermal Galilean holography, Phys. Rev. D 80 (2009) 026006 [arXiv:0903.4452] [SPIRES].ADSGoogle Scholar
  24. [24]
    A. Bergman, K. Dasgupta, O.J. Ganor, J.L. Karczmarek and G. Rajesh, Nonlocal field theories and their gravity duals, Phys. Rev. D 65 (2002) 066005 [hep-th/0103090] [SPIRES].MathSciNetADSGoogle Scholar
  25. [25]
    M. Alishahiha and O.J. Ganor, Twisted backgrounds, pp-waves and nonlocal field theories, JHEP 03 (2003) 006 [hep-th/0301080] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  26. [26]
    S. Hellerman and J. Polchinski, Compactification in the lightlike limit, Phys. Rev. D 59 (1999) 125002 [hep-th/9711037] [SPIRES].MathSciNetADSGoogle Scholar
  27. [27]
    E. Inönü and E.P. Wigner, Representations of the Galilei group, Nuovo Cim. 9 (1952) 705. zbMATHCrossRefGoogle Scholar
  28. [28]
    S.A. Hartnoll, Quantum critical dynamics from black holes, arXiv:0909.3553 [SPIRES].
  29. [29]
    S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  30. [30]
    J. McGreevy, Holographic duality with a view toward many-body physics, Adv. High Energy Phys. 2010 (2010) 723105 [arXiv:0909.0518] [SPIRES].Google Scholar
  31. [31]
    E. Witten and J. Bagger, Quantization of Newton’s constant in certain supergravity theories, Phys. Lett. B 115 (1982) 202 [SPIRES].MathSciNetADSGoogle Scholar
  32. [32]
    L. Álvarez-Gaumé and E. Witten, Gravitational anomalies, Nucl. Phys. B 234 (1984) 269 [SPIRES].CrossRefADSGoogle Scholar
  33. [33]
    S. Hellerman, A universal inequality for CFT and quantum gravity, arXiv:0902.2790 [SPIRES].
  34. [34]
    T. Nishioka, S. Ryu and T. Takayanagi, Holographic superconductor/insulator transition at zero temperature, JHEP 03 (2010) 131 [arXiv:0911.0962] [SPIRES].CrossRefADSGoogle Scholar
  35. [35]
    W.D. Goldberger, AdS/CFT duality for non-relativistic field theory, JHEP 03 (2009) 069 [arXiv:0806.2867] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  36. [36]
    J.L.F. Barbon and C.A. Fuertes, On the spectrum of nonrelativistic AdS/CFT, JHEP 09 (2008) 030 [arXiv:0806.3244] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  37. [37]
    S. Kachru, X. Liu and M. Mulligan, Gravity duals of Lifshitz-like fixed points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [SPIRES].MathSciNetADSGoogle Scholar
  38. [38]
    G.W. Gibbons, G.T. Horowitz and P.K. Townsend, Higher dimensional resolution of dilatonic black hole singularities, Class. Quant. Grav. 12 (1995) 297 [hep-th/9410073] [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  39. [39]
    S.S. Gubser, Curvature singularities: the good, the bad and the naked, Adv. Theor. Math. Phys. 4 (2000) 679 [hep-th/0002160] [SPIRES].zbMATHMathSciNetGoogle Scholar
  40. [40]
    E. Witten, String theory dynamics in various dimensions, Nucl. Phys. B 443 (1995) 85 [hep-th/9503124] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  41. [41]
    S.W. Hawking and D.N. Page, Thermodynamics of black holes in anti-de Sitter space, Commun. Math. Phys. 87 (1983) 577 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  42. [42]
    E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [SPIRES].zbMATHMathSciNetGoogle Scholar
  43. [43]
    S.A. Hartnoll, P.K. Kovtun, M. Muller and S. Sachdev, Theory of the Nernst effect near quantum phase transitions in condensed matter and in dyonic black holes, Phys. Rev. B 76 (2007) 144502 [arXiv:0706.3215] [SPIRES].CrossRefADSGoogle Scholar
  44. [44]
    W. Kohn, Theory of the insulating state, Phys. Rev. 133 (1964) A171.CrossRefMathSciNetADSGoogle Scholar
  45. [45]
    D.J. Scalapino, S.R. White, S.C. Zhang, Superfluid density and the Drude weight of the Hubbard model, Phys. Rev. Lett. 68 (1992) 2830.CrossRefADSGoogle Scholar
  46. [46]
    M. Oshikawa, Insulator, conductor and commensurability: a topological approach, Phys. Rev. Lett. 90 (2003) 236401 [Erratum ibid. 91 (2003) 109901] [cond-mat/0301338].CrossRefADSGoogle Scholar
  47. [47]
    I.R. Klebanov, S.S. Pufu and T. Tesileanu, Membranes with topological charge and AdS4/CFT3 correspondence, Phys. Rev. D 81 (2010) 125011 [arXiv:1004.0413] [SPIRES].ADSGoogle Scholar
  48. [48]
    I. Bloch, J. Dalibard, W. Zwerger, Many-body physics with ultracold gases, Rev. Mod. Phys. 80 (2008) 885 [arXiv:0704.3011] [SPIRES].CrossRefADSGoogle Scholar
  49. [49]
    I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: duality cascades and χSB-resolution of naked singularities, JHEP 08 (2000) 052 [hep-th/0007191] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  50. [50]
    J.M. Maldacena and C. Núñez, Towards the large-N limit of pure N = 1 super Yang-Mills, Phys. Rev. Lett. 86 (2001) 588 [hep-th/0008001] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  51. [51]
    S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [SPIRES].ADSGoogle Scholar
  52. [52]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [SPIRES].CrossRefADSGoogle Scholar
  53. [53]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  54. [54]
    G.T. Horowitz, Introduction to holographic superconductors, arXiv:1002.1722 [SPIRES].
  55. [55]
    C.P. Herzog, Lectures on holographic superfluidity and superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [SPIRES].Google Scholar
  56. [56]
    G. Coss, K. Balasubramanian and J. McGreevy, work in progress.Google Scholar
  57. [57]
    S.S. Gubser and F.D. Rocha, Peculiar properties of a charged dilatonic black hole in AdS 5, Phys. Rev. D 81 (2010) 046001 [arXiv:0911.2898] [SPIRES].MathSciNetADSGoogle Scholar
  58. [58]
    K. Goldstein, S. Kachru, S. Prakash and S.P. Trivedi, Holography of charged dilaton black holes, JHEP 08 (2010) 078 [arXiv:0911.3586] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  59. [59]
    C. Charmousis, B. Gouteraux, B.S. Kim, E. Kiritsis and R. Meyer, Effective holographic theories for low-temperature condensed matter systems, JHEP 11 (2010) 151 [arXiv:1005.4690] [SPIRES].CrossRefADSGoogle Scholar
  60. [60]
    U. Gürsoy, Continuous Hawking-Page transitions in Einstein-scalar gravity, arXiv:1007.0500 [SPIRES].
  61. [61]
    M.J. Duff, H. Lü, C.N. Pope, AdS 5 × S 5 untwisted, Nucl. Phys. B 532 (1998) 181 [hep-th/9803061] [SPIRES].CrossRefADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Department of PhysicsMITCambridgeU.S.A.

Personalised recommendations