Advertisement

Journal of High Energy Physics

, 2011:134 | Cite as

Form factors in \( \mathcal{N} = 4 \) super Yang-Mills and periodic Wilson loops

  • Andreas Brandhuber
  • Bill Spence
  • Gabriele Travaglini
  • Gang Yang
Article

Abstract

We calculate form factors of half-BPS operators in \( \mathcal{N} = 4 \) super Yang-Mills theory at tree level and one loop using novel applications of recursion relations and unitarity. In particular, we determine the expression of the one-loop form factors with two scalars and an arbitrary number of positive-helicity gluons. These quantities resemble closely the MHV scattering amplitudes, including holomorphicity of the tree-level form factor, and the expansion in terms of two-mass easy box functions of the one-loop result. Next, we compare our result for these form factors to the calculation of a particular periodic Wilson loop at one loop, finding agreement. This suggests a novel duality relating form factors to periodic Wilson loops.

Keywords

Supersymmetric gauge theory Extended Supersymmetry AdS-CFT Correspondence Gauge Symmetry 

References

  1. [1]
    L.F. Alday, B. Eden, G.P. Korchemsky, J. Maldacena and E. Sokatchev, From correlation functions to Wilson loops, arXiv:1007.3243 [SPIRES].
  2. [2]
    B. Eden, G.P. Korchemsky and E. Sokatchev, From correlation functions to scattering amplitudes, arXiv:1007.3246 [SPIRES].
  3. [3]
    B. Eden, G.P. Korchemsky and E. Sokatchev, More on the duality correlators/amplitudes, arXiv:1009.2488 [SPIRES].
  4. [4]
    L.F. Alday and J. Maldacena, Comments on gluon scattering amplitudes via AdS/CFT, JHEP 11 (2007) 068 [arXiv:0710.1060] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  5. [5]
    J. Maldacena and A. Zhiboedov, Form factors at strong coupling via a Y-system, JHEP 11 (2010) 104 [arXiv:1009.1139] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  6. [6]
    L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP 06 (2007) 064 [arXiv:0705.0303] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  7. [7]
    G.P. Korchemsky, J.M. Drummond and E. Sokatchev, Conformal properties of four-gluon planar amplitudes and Wilson loops, Nucl. Phys. B 795 (2008) 385 [arXiv:0707.0243] [SPIRES].MathSciNetADSGoogle Scholar
  8. [8]
    A. Brandhuber, P. Heslop and G. Travaglini, MHV amplitudes in N = 4 super Yang-Mills and Wilson loops, Nucl. Phys. B 794 (2008) 231 [arXiv:0707.1153] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  9. [9]
    W.L. van Neerven, Infrared behavior of on-shell form-factors in a N = 4 supersymmetric Yang-Mills field theory, Z. Phys. C 30 (1986) 595 [SPIRES].ADSGoogle Scholar
  10. [10]
    W.L. van Neerven, Dimensional regularization of mass and infrared singularities in two loop on-shell vertex functions, Nucl. Phys. B 268 (1986) 453 [SPIRES].CrossRefADSGoogle Scholar
  11. [11]
    C. Anastasiou, Z. Bern, L.J. Dixon and D.A. Kosower, Planar amplitudes in maximally supersymmetric Yang-Mills theory, Phys. Rev. Lett. 91 (2003) 251602 [hep-th/0309040] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  12. [12]
    Z. Bern, L.J . Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev. D 72 (2005) 085001 [hep-th/0505205] [SPIRES].MathSciNetADSGoogle Scholar
  13. [13]
    E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys. 252 (2004) 189 [hep-th/0312171] [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  14. [14]
    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One-loop n-point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  15. [15]
    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys. B 435 (1995) 59 [hep-ph/9409265] [SPIRES].CrossRefADSGoogle Scholar
  16. [16]
    R. Britto, F. Cachazo and B. Feng, New recursion relations for tree amplitudes of gluons, Nucl. Phys. B 715 (2005) 499 [hep-th/0412308] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  17. [17]
    R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  18. [18]
    V.P. Nair, A current algebra for some gauge theory amplitudes, Phys. Lett. B 214 (1988) 215 [SPIRES].ADSGoogle Scholar
  19. [19]
    D.A. Kosower, All-order collinear behavior in gauge theories, Nucl. Phys. B 552 (1999) 319 [hep-ph/9901201] [SPIRES].CrossRefADSGoogle Scholar
  20. [20]
    S. Weinberg, The quantum theory of fields Volume 1: foundations, Cambridge UNiversity P ress, Cambridge UK (1995).Google Scholar
  21. [21]
    L.J. Dixon, E.W.N. Glover and V.V. Khoze, MHV rules for Higgs plus multi-gluon amplitudes, JHEP 12 (2004) 015 [hep-th/0411092] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  22. [22]
    A. Brandhuber, B.J. Spence and G. Travaglini, One-loop gauge theory amplitudes in N = 4 super Yang-Mills from MHV vertices, Nucl. Phys. B 706 (2005) 150 [hep-th/0407214] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  23. [23]
    A. Brandhuber, B. Spence and G. Travaglini, From trees to loops and back, JHEP 01 (2006) 142 [hep-th/0510253] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  24. [24]
    J. Bedford, A. Brandhuber, B.J. Spence and G. Travaglini, A twistor approach to one-loop amplitudes in N = 1 supersymmetric Yang-Mills theory, Nucl. Phys. B 706 (2005) 100 [hep-th/0410280] [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  25. [25]
    C. Quigley and M. Rozali, One-loop MHV amplitudes in supersymmetric gauge theories, JHEP 01 (2005) 053 [hep-th/0410278] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  26. [26]
    J. Bedford, A. Brandhuber, B.J. Spence and G. Travaglini, Non-supersymmetric loop amplitudes and MHV vertices, Nucl. Phys. B 712 (2005) 59 [hep-th/0412108] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  27. [27]
    L.F. Alday and J. Maldacena, Minimal surfaces in AdS and the eight-gluon scattering amplitude at strong coupling, arXiv:0903.4707 [SPIRES].
  28. [28]
    L.F. Alday and J. Maldacena, Null polygonal Wilson loops and minimal surfaces in Anti-de-Sitter space, JHEP 11 (2009) 082 [arXiv:0904.0663] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  29. [29]
    L.F. Alday, D. Gaiotto and J. Maldacena, Thermodynamic bubble ansatz, arXiv:0911.4708 [SPIRES].
  30. [30]
    L.F. Alday, J. Maldacena, A. Sever and P. Vieira, Y-system for scattering amplitudes, J. Phys. A 43 (2010) 485401 [arXiv:1002.2459] [SPIRES].MathSciNetGoogle Scholar
  31. [31]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, On planar gluon amplitudes/Wilson loops duality, Nucl. Phys. B 795 (2008) 52 [arXiv:0709.2368] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  32. [32]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Conformal Ward identities for Wilson loops and a test of the duality with gluon amplitudes, Nucl. Phys. B 826 (2010) 337 [arXiv:0712.1223] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  33. [33]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, The hexagon Wilson loop and the BDS ansatz for the six-gluon amplitude, Phys. Lett. B 662 (2008) 456 [arXiv:0712.4138] [SPIRES].MathSciNetADSGoogle Scholar
  34. [34]
    Z. Bern et al., The two-loop six-gluon MHV amplitude in maximally supersymmetric Yang-Mills theory, Phys. Rev. D 78 (2008) 045007 [arXiv:0803.1465] [SPIRES].MathSciNetADSGoogle Scholar
  35. [35]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Hexagon Wilson loop = six-gluon MHV amplitude, Nucl. Phys. B 815 (2009) 142 [arXiv:0803.1466] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  36. [36]
    C. Anastasiou et al., Two-loop polygon Wilson loops in N = 4 SYM, JHEP 05 (2009) 115 [arXiv:0902.2245] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  37. [37]
    A. Brandhuber, P. Heslop, V.V. Khoze and G. Travaglini, Simplicity of polygon wilson loops in N = 4 SYM, JHEP 01 (2010) 050 [arXiv:0910.4898] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  38. [38]
    V. Del Duca, C. Duhr and V.A. Smirnov, The two-loop hexagon wilson loop in N = 4 SYM, JHEP 05 (2010) 084 [arXiv:1003.1702] [SPIRES].CrossRefADSGoogle Scholar
  39. [39]
    A. Brandhuber et al., A surprise in the amplitude/Wilson loop duality, JHEP 07 (2010) 080 [arXiv:1004.2855] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  40. [40]
    V. Del Duca, C. Duhr and V.A. Smirnov, A two-loop octagon Wilson loop in N = 4 SYM, JHEP 09 (2010) 015 [arXiv:1006.4127] [SPIRES].CrossRefADSGoogle Scholar
  41. [41]
    A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical polylogarithms for amplitudes and Wilson loops, Phys. Rev. Lett. 105 (2010) 151605 [arXiv:1006.5703] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  42. [42]
    P. Heslop and V.V. Khoze, Analytic results for MHV Wilson loops, JHEP 11 (2010) 035 [arXiv:1007.1805] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  43. [43]
    I.A. Korchemskaya and G.P. Korchemsky, On lightlike Wilson loops, Phys. Lett. B 287 (1992) 169 [SPIRES].ADSGoogle Scholar
  44. [44]
    A.H. Mueller, On the asymptotic behavior of the Sudakov form-factor, Phys. Rev. D 20 (1979) 2037 [SPIRES].MathSciNetADSGoogle Scholar
  45. [45]
    J .C. Collins, Algorithm to compute corrections to the Sudakov form-factor, Phys. Rev. D 22 (1980) 1478 [SPIRES].ADSGoogle Scholar
  46. [46]
    A. Sen, Asymptotic behavior of the Sudakov form-factor in QCD, Phys. Rev. D 24 (1981) 3281 [SPIRES].ADSGoogle Scholar
  47. [47]
    G.P. Korchemsky, Double logarithmic asymptotics in QCD, Phys. Lett. B 217 (1989) 330 [SPIRES].MathSciNetADSGoogle Scholar
  48. [48]
    S. Catani and L. Trentadue, Resummation of the QCD perturbative series for hard processes, Nucl. Phys. B 327 (1989) 323 [SPIRES].CrossRefADSGoogle Scholar
  49. [49]
    L. Magnea and G.F. Sterman, Analytic continuation of the Sudakov form-factor in QCD, Phys. Rev. D 42 (1990) 4222 [SPIRES].ADSGoogle Scholar
  50. [50]
    S. Catani, The singular behaviour of QCD amplitudes at two-loop order, Phys. Lett. B 427 (1998) 161 [hep-ph/9802439] [SPIRES].ADSGoogle Scholar
  51. [51]
    G.F. Sterman and M.E. Tejeda-Yeomans, Multi-loop amplitudes and resummation, Phys. Lett. B 552 (2003) 48 [hep-ph/0210130] [SPIRES].ADSGoogle Scholar
  52. [52]
    V.A. Smirnov, Feynman integral calculus, Springer, U.S.A. (2006).Google Scholar
  53. [53]
    G. Duplancic and B. Nizic, Dimensionally regulated one-loop box scalar integrals with massless internal lines, Eur. Phys. J. C 20 (2001) 357 [hep-ph/0006249] [SPIRES].CrossRefADSGoogle Scholar
  54. [54]
    Z. Bern, L.J . Dixon and D.A. Kosower, Dimensionally regulated pentagon integrals, Nucl. Phys. B 412 (1994) 751 [hep-ph/9306240] [SPIRES].CrossRefMathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Andreas Brandhuber
    • 1
  • Bill Spence
    • 1
  • Gabriele Travaglini
    • 1
  • Gang Yang
    • 1
  1. 1.Centre for Research in String Theory, School of PhysicsQueen Mary University of LondonLondonU.K.

Personalised recommendations