Journal of High Energy Physics

, 2011:117 | Cite as

Holographic metals at finite temperature

  • V. Giangreco M. Puletti
  • S. Nowling
  • L. Thorlacius
  • T. Zingg
Article

Abstract

A holographic dual description of a 2+1 dimensional system of strongly interacting fermions at low temperature and finite charge density is given in terms of an electron cloud suspended over the horizon of a charged black hole in asymptotically AdS spacetime. The electron star of Hartnoll and Tavanfar is recovered in the limit of zero temperature, while at higher temperatures the fraction of charge carried by the electron cloud is reduced and at a critical temperature there is a third order phase transition to a configuration with only a charged black hole. The geometric structure implies that finite temperature transport coefficients, including the AC electrical conductivity, only receive contributions from bulk fermions within a finite band in the radial direction.

Keywords

Holography and condensed matter physics (AdS/CMT) Gauge-gravity correspondence Black Holes 

References

  1. [1]
    C.P. Herzog, Lectures on holographic superfluidity and superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [SPIRES].Google Scholar
  2. [2]
    S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  3. [3]
    J. McGreevy, Holographic duality with a view toward many-body physics, Adv. High Energy Phys. 2010 (2010) 723105 [arXiv:0909.0518] [SPIRES].Google Scholar
  4. [4]
    S. Sachdev, Strange metals and the AdS/CFT correspondence, J. Stat. Mech. (2010) P11022 [arXiv:1010.0682] [SPIRES].
  5. [5]
    S.A. Hartnoll and A. Tavanfar, Electron stars for holographic metallic criticality, arXiv:1008.2828 [SPIRES].
  6. [6]
    J. de Boer, K. Papadodimas and E. Verlinde, Holographic neutron stars, JHEP 10 (2010) 020 [arXiv:0907.2695] [SPIRES].CrossRefGoogle Scholar
  7. [7]
    S.A. Hartnoll, J. Polchinski, E. Silverstein and D. Tong, Towards strange metallic holography, JHEP 04 (2010) 120 [arXiv:0912.1061] [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    X. Arsiwalla, J. de Boer, K. Papadodimas and E. Verlinde, Degenerate stars and gravitational collapse in AdS/CFT, arXiv:1010.5784 [SPIRES].
  9. [9]
    V. Parente and R. Roychowdhury, A study on charged neutron star in AdS 5, arXiv:1011.5362 [SPIRES].
  10. [10]
    S.A. Hartnoll and P. Petrov, Electron star birth: a continuous phase transition at nonzero density, arXiv:1011.6469 [SPIRES].
  11. [11]
    M. Čubrović, J. Zaanen and K. Schalm, Constructing the AdS dual of a Fermi liquid: AdS black holes with Dirac hair, arXiv:1012.5681 [SPIRES].
  12. [12]
    G.W. Gibbons and S.W. Hawking, Action integrals and partition functions in quantum gravity, Phys. Rev. D 15 (1977) 2752 [SPIRES].MathSciNetADSGoogle Scholar
  13. [13]
    M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  14. [14]
    V. Balasubramanian and P. Kraus, A stress tensor for anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  15. [15]
    D.T. Son and A.O. Starinets, Minkowski-space correlators in AdS/CFT correspondence: recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  16. [16]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  17. [17]
    S.S. Gubser and A. Nellore, Low-temperature behavior of the Abelian Higgs model in anti-de Sitter space, JHEP 04 (2009) 008 [arXiv:0810.4554] [SPIRES].CrossRefADSGoogle Scholar
  18. [18]
    G.T. Horowitz and M.M. Roberts, Zero temperature limit of holographic superconductors, JHEP 11 (2009) 015 [arXiv:0908.3677] [SPIRES].CrossRefADSGoogle Scholar
  19. [19]
    J.P. Gauntlett, J. Sonner and T. Wiseman, Holographic superconductivity in M-theory, Phys. Rev. Lett. 103 (2009) 151601 [arXiv:0907.3796] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  20. [20]
    S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [SPIRES].ADSGoogle Scholar
  21. [21]
    S.A. Hartnoll, D.M. Hofman and A. Tavanfar, Holographically smeared Fermi surface: quantum oscillations and Luttinger count in electron stars, arXiv:1011.2502 [SPIRES].

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • V. Giangreco M. Puletti
    • 1
  • S. Nowling
    • 1
  • L. Thorlacius
    • 1
    • 2
  • T. Zingg
    • 1
    • 2
  1. 1.NORDITAStockholmSweden
  2. 2.University of Iceland, Science InstituteReykjavikIceland

Personalised recommendations