Journal of High Energy Physics

, 2011:107 | Cite as

Chiral dynamics with strange quarks in the light of recent lattice simulations

  • Véronique Bernard
  • Sébastien Descotes-GenonEmail author
  • Guillaume Toucas
Open Access


Several lattice collaborations performing simulations with 2+1 light dynamical quarks have experienced difficulties in fitting their data with standard N f = 3 chiral expansions at next-to-leading order, yielding low values of the quark condensate and/ or the decay constant in the N f = 3 chiral limit. A reordering of these expansions seems required to analyse these data in a consistent way. We discuss such a reordering, known as Resummed Chiral Perturbation Theory, in the case of pseudoscalar masses and decay constants, pion and kaon electromagnetic form factors and K ℓ3 form factors. We show that it provides a good fit of the recent results of two lattice collaborations (PACS-CS and RBC/UKQCD). We describe the emerging picture for the pattern of chiral symmetry breaking, marked by a strong dependence of the observables on the strange quark mass and thus a significant difference between chiral symmetry breaking in the N f = 2 and N f =3 chiral limits. We discuss the consequences for the ratio of decay constants F K /F π and the K ℓ3 form factor at vanishing momentum transfer.


Lattice QCD Chiral Lagrangians Kaon Physics 


  1. [1]
    J. Gasser and H. Leutwyler, Chiral Perturbation Theory to One Loop, Ann. Phys. 158 (1984) 142 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  2. [2]
    J. Gasser and H. Leutwyler, Chiral Perturbation Theory: Expansions in the Mass of the Strange Quark, Nucl. Phys. B 250 (1985) 465 [SPIRES].CrossRefADSGoogle Scholar
  3. [3]
    PACS-CS collaboration, S. Aoki et al., 2+1 Flavor Lattice QCD toward the Physical Point, Phys. Rev. D 79 (2009) 034503 [arXiv:0807.1661] [SPIRES].ADSGoogle Scholar
  4. [4]
    RBC -UKQCD collaboration, C. Allton et al., Physical Results from 2+1 Flavor Domain Wall QCD and SU(2) Chiral Perturbation Theory, Phys. Rev. D 78 (2008) 114509 [arXiv:0804.0473] [SPIRES].ADSGoogle Scholar
  5. [5]
    P.A. Boyle et al., K l3 semileptonic form factor from 2+1 flavour lattice QCD, Phys. Rev. Lett. 100 (2008) 141601 [arXiv:0710.5136] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  6. [6]
    P.A. Boyle et al., K→π form factors with reduced model dependence, arXiv:1004.0886 [SPIRES].
  7. [7]
    RBC collaboration, J.M. Flynn and C.T. Sachrajda, SU(2) chiral prturbation theory for K l3 decay amplitudes, Nucl. Phys. B 812 (2009) 64 [arXiv:0809.1229] [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    C. Bernard et al., Status of the MILC light pseudoscalar meson project, PoS(LATTICE 2007)090 [arXiv:0710.1118] [SPIRES].
  9. [9]
    The MILC collaboration, A. Bazavov et al., Results from the MILC collaboration’s SU(3) chiral perturbation theory analysis, PoS(LAT2009)079 [arXiv:0910.3618] [SPIRES].
  10. [10]
    J. Bijnens, Chiral Perturbation Theory Beyond One Loop, Prog. Part. Nucl. Phys. 58 (2007) 521 [hep-ph/0604043] [SPIRES].CrossRefADSGoogle Scholar
  11. [11]
    J. Bijnens and N. Danielsson, Electromagnetic Corrections in Partially Quenched Chiral Perturbation Theory, Phys. Rev. D 75 (2007) 014505 [hep-lat/0610127] [SPIRES].ADSGoogle Scholar
  12. [12]
    J. Bijnens, N. Danielsson and T.A. Lahde, Three-flavor partially quenched chiral perturbation theory at NNLO for meson masses and decay constants, Phys. Rev. D 73 (2006) 074509 [hep-lat/0602003] [SPIRES].ADSGoogle Scholar
  13. [13]
    J. Bijnens and N. Danielsson, The eta mass and NNLO three-flavor partially quenched chiral perturbation theory, Phys. Rev. D 74 (2006) 054503 [hep-lat/0606017] [SPIRES].ADSGoogle Scholar
  14. [14]
    RBC collaboration, R. Mawhinney, NLO and NNLO chiral fits for 2+1 flavor DWF ensembles, PoS(LAT2009)081 [arXiv:0910.3194] [SPIRES].
  15. [15]
    M. Knecht, B. Moussallam, J. Stern and N.H. Fuchs, The Low-energy ππ amplitude to one and two loops, Nucl. Phys. B 457 (1995) 513 [hep-ph/9507319] [SPIRES].CrossRefADSGoogle Scholar
  16. [16]
    B. Ananthanarayan, G. Colangelo, J. Gasser and H. Leutwyler, Roy equation analysis of ππ scattering, Phys. Rept. 353 (2001) 207 [hep-ph/0005297] [SPIRES].CrossRefADSzbMATHGoogle Scholar
  17. [17]
    G. Colangelo, J. Gasser and H. Leutwyler, The quark condensate from K e4 decays, Phys. Rev. Lett. 86 (2001) 5008 [hep-ph/0103063] [SPIRES].CrossRefADSGoogle Scholar
  18. [18]
    S. Descotes-Genon, N.H. Fuchs, L. Girlanda and J. Stern, Analysis and interpretation of new low-energy ππ scattering data, Eur. Phys. J. C 24 (2002) 469 [hep-ph/0112088] [SPIRES].Google Scholar
  19. [19]
    J. Bijnens, P. Dhonte and P. Talavera, ππ scattering in three flavour ChPT, JHEP 01 (2004) 050 [hep-ph/0401039] [SPIRES].CrossRefADSGoogle Scholar
  20. [20]
    NA48/2 collaboration, J.R. Batley et al., New high statistics measurement of K e4 decay form factors and ππ scattering phase shifts, Eur. Phys. J. C 54 (2008) 411 [SPIRES].CrossRefADSGoogle Scholar
  21. [21]
    J.R. Batley et al., Determination of the S-wave ππ scattering lengths from a study of K ± → π±π0π0 decays, Eur. Phys. J. C 64 (2009) 589 [arXiv:0912.2165] [SPIRES].CrossRefADSGoogle Scholar
  22. [22]
    G. Colangelo, J. Gasser and A. Rusetsky, Isospin breaking in Kl4 decays, Eur. Phys. J. C 59 (2009) 777 [arXiv:0811.0775] [SPIRES].CrossRefADSGoogle Scholar
  23. [23]
    P. Büettiker, S. Descotes-Genon and B. Moussallam, Are-analysis of πK scattering a la Roy and Steiner, Eur. Phys. J. C 33 (2004) 409 [hep-ph/0310283] [SPIRES].ADSGoogle Scholar
  24. [24]
    J. Bijnens, P. Dhonte and P. Talavera, πK scattering in three flavor ChPT, JHEP 05 (2004) 036 [hep-ph/0404150] [SPIRES].CrossRefADSGoogle Scholar
  25. [25]
    S. Descotes-Genon, ππ and πK scatterings in three-flavour resummed chiral perturbation theory, J. Phys. Conf. Ser. 110 (2008) 052012 [arXiv:0710.1696] [SPIRES].CrossRefADSGoogle Scholar
  26. [26]
    J. Bijnens and I. Jemos, Determination of Low Energy Constants and testing Chiral Perturbation Theory at order p 6 (NNLO), PoS(CD09)087 [arXiv:0909.4477] [SPIRES].
  27. [27]
    S. Descotes-Genon, L. Girlanda and J. Stern, Paramagnetic effect of light quark loops on chiral symmetry breaking, JHEP 01 (2000) 041 [hep-ph/9910537] [SPIRES].CrossRefADSGoogle Scholar
  28. [28]
    S. Descotes-Genon and J. Stern, Vacuum fluctuations of anti-q q and values of low-energy constants, Phys. Lett. B 488 (2000) 274 [hep-ph/0007082] [SPIRES].ADSGoogle Scholar
  29. [29]
    B. Moussallam, N f dependence of the quark condensate from a chiral sum rule, Eur. Phys. J. C 14 (2000) 111 [hep-ph/9909292] [SPIRES].ADSGoogle Scholar
  30. [30]
    B. Moussallam, Flavor stability of the chiral vacuum and scalar meson dynamics, JHEP 08 (2000) 005 [hep-ph/0005245] [SPIRES].CrossRefADSGoogle Scholar
  31. [31]
    S. Descotes-Genon, Zweig rule violation in the scalar sector and values of low-energy constants, JHEP 03 (2001) 002 [hep-ph/0012221] [SPIRES].CrossRefADSGoogle Scholar
  32. [32]
    U.-G. Meißner, Chiral dynamics with strange quarks: Mysteries and opportunities, Phys. Scripta T 99 (2002) 68 [hep-ph/0201078] [SPIRES].CrossRefADSGoogle Scholar
  33. [33]
    U.-G. Meißner, Chiral dynamics with strange quarks, AIP Conf. Proc. 717 (2004) 656 [hep-ph/0309248] [SPIRES].CrossRefADSGoogle Scholar
  34. [34]
    V. Bernard, Chiral Perturbation Theory and Baryon Properties, Prog. Part. Nucl. Phys. 60 (2008) 82 [arXiv:0706.0312] [SPIRES].CrossRefADSGoogle Scholar
  35. [35]
    S. Descotes-Genon, N.H. Fuchs, L. Girlanda and J. Stern, Resumming QCD vacuum fluctuations in three-flavour chiral perturbation theory, Eur. Phys. J. C 34 (2004) 201 [hep-ph/0311120] [SPIRES].ADSGoogle Scholar
  36. [36]
    S. Dürr et al., The ratio F K /F π in QCD, Phys. Rev. D 81 (2010) 054507 [arXiv:1001.4692] [SPIRES].ADSGoogle Scholar
  37. [37]
    S. Dürr et al., Ab-Initio Determination of Light Hadron Masses, Science 322 (2008) 1224 [arXiv:0906.3599] [SPIRES].CrossRefADSGoogle Scholar
  38. [38]
    R. Baron et al., Light hadrons from lattice QCD with light (u,d), strange and charm dynamical quarks, JHEP 06 (2010) 111 [arXiv:1004.5284] [SPIRES].CrossRefADSGoogle Scholar
  39. [39]
    TWQCD collaboration, J. Noaki et al., Chiral properties of light mesons with N f = 2+1 overlap fermions, PoS(LAT2009)096 [arXiv:0910.5532] [SPIRES].
  40. [40]
    S. Descotes-Genon, L. Girlanda and J. Stern, Chiral order and fluctuations in multi-flavour QCD, Eur. Phys. J. C 27 (2003) 115 [hep-ph/0207337] [SPIRES].CrossRefADSGoogle Scholar
  41. [41]
    J. Gasser and H. Leutwyler, Low-Energy Expansion of Meson Form-Factors, Nucl. Phys. B 250 (1985) 517 [SPIRES].CrossRefADSGoogle Scholar
  42. [42]
    J. Gasser and U.G. Meißner, Chiral expansion of pion form-factors beyond one loop, Nucl. Phys. B 357 (1991) 90 [SPIRES].CrossRefADSGoogle Scholar
  43. [43]
    J. Bijnens and P. Talavera, Pion and kaon electromagnetic form factors, JHEP 03 (2002) 046 [hep-ph/0203049] [SPIRES].CrossRefADSGoogle Scholar
  44. [44]
    V. Bernard and E. Passemar, Chiral Extrapolation of the Strangeness Changing K π Form Factor, JHEP 04 (2010) 001 [arXiv:0912.3792] [SPIRES].CrossRefADSGoogle Scholar
  45. [45]
    Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 @@@@@[SPIRES] update online at Scholar
  46. [46]
    Flavia Net Working Group on Kaon Decays collaboration, M. Antonelli et al., Precision tests of the Standard Model with leptonic and semileptonic kaon decays, arXiv:0801.1817 [SPIRES].
  47. [47]
    M. Antonelli et al., An evaluation of |Vus| and precise tests of the Standard Model from world data on leptonic and semileptonic kaon decays, Eur. Phys. J. C 69 (2010) 399 [arXiv:1005.2323] [SPIRES].CrossRefADSGoogle Scholar
  48. [48]
    W.J. Marciano and A. Sirlin, Improved calculation of electroweak radiative corrections and the value of V ud, Phys. Rev. Lett. 96 (2006) 032002 [hep-ph/0510099] [SPIRES].CrossRefADSGoogle Scholar
  49. [49]
    I.S. Towner and J.C. Hardy, An improved calculation of the isospin-symmetry-breaking corrections to superallowed Fermi β decay, Phys. Rev. C 77 (2008) 025501 [arXiv:0710.3181] [SPIRES].ADSGoogle Scholar
  50. [50]
    J.C. Hardy and I.S. Towner, Superallowed 0+ → 0+ nuclear beta decays: A new survey with precision tests of the conserved vector current hypothesis and the standard model, Phys. Rev. C 79 (2009) 055502 [arXiv:0812.1202] [SPIRES].ADSGoogle Scholar
  51. [51]
    C.G. Callan and S.B. Treiman, Equal Time Commutators and K Meson Decays, Phys. Rev. Lett. 16 (1966) 153 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  52. [52]
    J. Gasser and H. Leutwyler, Low-Energy Expansion of Meson Form-Factors, Nucl. Phys. B 250 (1985) 517 [SPIRES].CrossRefADSGoogle Scholar
  53. [53]
    V. Bernard, M. Oertel, E. Passemar and J. Stern, K Lμ3 decay: A stringent test of right-handed quark currents, Phys. Lett. B 638 (2006) 480 [hep-ph/0603202] [SPIRES].ADSGoogle Scholar
  54. [54]
    V. Bernard, M. Oertel, E. Passemar and J. Stern, Dispersive representation and shape of the K l3 form factors: robustness, Phys. Rev. D 80 (2009) 034034 [arXiv:0903.1654] [SPIRES].ADSGoogle Scholar
  55. [55]
    NA48 collaboration, A. Lai et al., Measurement of Kμ30 form factors, Phys. Lett. B 647 (2007) 341 [hep-ex/0703002] [SPIRES].ADSGoogle Scholar
  56. [56]
    KLOE collaboration, F. Ambrosino et al., Measurement of the K L→πμν form factor parameters with the KLOE detector, JHEP 12 (2007) 105 [arXiv:0710.4470] [SPIRES].ADSGoogle Scholar
  57. [57]
    KTeV collaboration, E. Abouzaid et al., Dispersive analysis of K Lμ3 and K Le3 scalar and vector form factors using KTeV data, Phys. Rev. D 81 (2010) 052001 [arXiv:0912.1291] [SPIRES].ADSGoogle Scholar
  58. [58]
    G. Ecker, J. Gasser, A. Pich and E. de Rafael, The Role of Resonances in Chiral Perturbation Theory, Nucl. Phys. B 321 (1989) 311 [SPIRES].CrossRefADSGoogle Scholar
  59. [59]
    PACS-CS collaboration, S. Aoki et al., Physical Point Simulation in 2+1 Flavor Lattice QCD, Phys. Rev. D 81 (2010) 074503 [arXiv:0911.2561] [SPIRES].ADSGoogle Scholar
  60. [60]
    T.A. Lahde and U.-G. Meißner, Improved Analysis of J/ψ Decays into a Vector Meson and Two Pseudoscalars, Phys. Rev. D 74 (2006) 034021 [hep-ph/0606133] [SPIRES].ADSGoogle Scholar
  61. [61]
    J. Gasser, C. Haefeli, M.A. Ivanov and M. Schmid, Integrating out strange quarks in ChPT: terms at order p 6, Phys. Lett. B 675 (2009) 49 [arXiv:0903.0801] [SPIRES].CrossRefADSGoogle Scholar
  62. [62]
    E. Scholz, private communication.Google Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Véronique Bernard
    • 1
  • Sébastien Descotes-Genon
    • 2
    Email author
  • Guillaume Toucas
    • 2
  1. 1.Institut de Physique NucléaireCNRS/ Univ. Paris-Sud 11 (UMR 8608)Orsay CedexFrance
  2. 2.Laboratoire de Physique ThéoriqueCNRS/Univ. Paris-Sud 11 (UMR 8627)Orsay CedexFrance

Personalised recommendations