Journal of High Energy Physics

, 2011:105 | Cite as

On the massive gluon propagator, the PT-BFM scheme and the low-momentum behaviour of decoupling and scaling DSE solutions

Article

Abstract

We study the low-momentum behaviour of Yang-Mills propagators obtained from Landau-gauge Dyson-Schwinger equations (DSE) in the PT-BFM scheme. We compare the ghost propagator numerical results with the analytical ones obtained by analyzing the low-momentum behaviour of the ghost propagator DSE in Landau gauge, assuming for the truncation a constant ghost-gluon vertex and a simple model for a massive gluon propagator. The asymptotic expression obtained for the regular or decoupling ghost dressing function up to the order \( \mathcal{O}\left( {{q^2}} \right) \) is proven to fit pretty well the numerical PT-BFM results. Furthermore, when the size of the coupling renormalized at some scale approaches some critical value, the numerical PT-BFM propagators tend to behave as the scaling ones. We also show that the scaling solution, implying a diverging ghost dressing function, cannot be a DSE solution in the PT-BFM scheme but an unattainable limiting case.

Keywords

Phenomenological Models QCD 

References

  1. [1]
    P. Boucaud et al., IR finiteness of the ghost dressing function from numerical resolution of the ghost SD equation, JHEP 06 (2008) 012 [arXiv:0801.2721] [SPIRES].CrossRefADSGoogle Scholar
  2. [2]
    P. Boucaud et al., On the IR behaviour of the Landau-gauge ghost propagator, JHEP 06 (2008) 099 [arXiv:0803.2161] [SPIRES].CrossRefADSGoogle Scholar
  3. [3]
    A.C. Aguilar and J. Papavassiliou, Gluon mass generation in the PT-BFM scheme, JHEP 12 (2006) 012 [hep-ph/0610040] [SPIRES].CrossRefADSGoogle Scholar
  4. [4]
    A.C. Aguilar and J. Papavassiliou, On dynamical gluon mass generation, Eur. Phys. J. A 31 (2007) 742 [arXiv:0704.2308] [SPIRES].ADSGoogle Scholar
  5. [5]
    A.C. Aguilar and A.A. Natale, A dynamical gluon mass solution in a coupled system of the Schwinger-Dyson equations, JHEP 08 (2004) 057 [hep-ph/0408254] [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    A.C. Aguilar, D. Binosi and J. Papavassiliou, Gluon and ghost propagators in the Landau gauge: deriving lattice results from Schwinger-Dyson equations, Phys. Rev. D 78 (2008) 025010 [arXiv:0802.1870] [SPIRES].ADSGoogle Scholar
  7. [7]
    R. Alkofer and L. von Smekal, The infrared behavior of QCD Green’s functions: confinement, dynamical symmetry breaking and hadrons as relativistic bound states, Phys. Rept. 353 (2001) 281 [hep-ph/0007355] [SPIRES].MATHCrossRefADSGoogle Scholar
  8. [8]
    C. Lerche and L. von Smekal, On the infrared exponent for gluon and ghost propagation in Landau gauge QCD, Phys. Rev. D 65 (2002) 125006 [hep-ph/0202194] [SPIRES].ADSGoogle Scholar
  9. [9]
    D. Zwanziger, Non-perturbative Landau gauge and infrared critical exponents in QCD, Phys. Rev. D 65 (2002) 094039 [hep-th/0109224] [SPIRES].ADSGoogle Scholar
  10. [10]
    C.S. Fischer and R. Alkofer, Infrared exponents and running coupling of SU(N) Yang-Mills theories, Phys. Lett. B 536 (2002) 177 [hep-ph/0202202] [SPIRES].ADSGoogle Scholar
  11. [11]
    J.M. Pawlowski, D.F. Litim, S. Nedelko and L. von Smekal, Infrared behaviour and fixed points in Landau gauge QCD, Phys. Rev. Lett. 93 (2004) 152002 [hep-th/0312324] [SPIRES].CrossRefADSGoogle Scholar
  12. [12]
    M.Q. Huber, R. Alkofer, C.S. Fischer and K. Schwenzer, The infrared behavior of Landau gauge Yang-Mills theory in D = 2, 3 and 4 dimensions, Phys. Lett. B 659 (2008) 434 [arXiv:0705.3809] [SPIRES].MathSciNetADSGoogle Scholar
  13. [13]
    C.S. Fischer, A. Maas and J.M. Pawlowski, On the infrared behavior of Landau gauge Yang-Mills theory, Annals Phys. 324 (2009) 2408 [arXiv:0810.1987] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  14. [14]
    P. Boucaud et al., Ghost-gluon running coupling, power corrections and the determination of \( {\Lambda_{\mathop {\text{MS}}\limits^\_}} \), Phys. Rev. D 79 (2009) 014508 [arXiv:0811.2059] [SPIRES].ADSGoogle Scholar
  15. [15]
    A. Sternbeck et al., Running α s from Landau-gauge gluon and ghost correlations, PoS(LATTICE 2007)256 [arXiv:0710.2965] [SPIRES].
  16. [16]
    P. Watson and H. Reinhardt, The Coulomb gauge ghost Dyson-Schwinger equation, Phys. Rev. D 82 (2010) 125010 [arXiv:1007.2583] [SPIRES].ADSGoogle Scholar
  17. [17]
    P. Watson and H. Reinhardt, The ghost propagator in Coulomb gauge, arXiv:1011.2148 [SPIRES].
  18. [18]
    D. Epple, H. Reinhardt, W. Schleifenbaum and A.P. Szczepaniak, Subcritical solution of the Yang-Mills Schroedinger equation in the Coulomb gauge, Phys. Rev. D 77 (2008) 085007 [arXiv:0712.3694] [SPIRES].ADSGoogle Scholar
  19. [19]
    A.P. Szczepaniak and E.S. Swanson, Coulomb gauge QCD, confinement and the constituent representation, Phys. Rev. D 65 (2002) 025012 [hep-ph/0107078] [SPIRES].ADSGoogle Scholar
  20. [20]
    J.M. Cornwall, Positivity issues for the pinch-technique gluon propagator and their resolution, Phys. Rev. D 80 (2009) 096001 [arXiv:0904.3758] [SPIRES].ADSGoogle Scholar
  21. [21]
    P. Boucaud et al., The low-momentum ghost dressing function and the gluon mass, Phys. Rev. D 82 (2010) 054007 [arXiv:1004.4135] [SPIRES].ADSGoogle Scholar
  22. [22]
    A.C. Aguilar, D. Binosi, J. Papavassiliou and J. Rodriguez-Quintero, Non-perturbative comparison of QCD effective charges, Phys. Rev. D 80 (2009) 085018 [arXiv:0906.2633] [SPIRES].ADSGoogle Scholar
  23. [23]
    A.C. Aguilar, private communication.Google Scholar
  24. [24]
    D. Binosi and J. Papavassiliou, The pinch technique to all orders, Phys. Rev. D 66 (2002) 111901 [hep-ph/0208189] [SPIRES].MathSciNetADSGoogle Scholar
  25. [25]
    D. Binosi and J. Papavassiliou, Gauge-invariant truncation scheme for the Schwinger-Dyson equations of QCD, Phys. Rev. D 77 (2008) 061702 [arXiv:0712.2707] [SPIRES].ADSGoogle Scholar
  26. [26]
    D. Binosi and J. Papavassiliou, Gauge-invariant truncation scheme for the Schwinger-Dyson equations of QCD, Phys. Rev. D 77 (2008) 061702 [arXiv:0712.2707] [SPIRES].ADSGoogle Scholar
  27. [27]
    C.S. Fischer and J.M. Pawlowski, Uniqueness of infrared asymptotics in Landau gauge Yang-Mills theory, Phys. Rev. D 75 (2007) 025012 [hep-th/0609009] [SPIRES].MathSciNetADSGoogle Scholar
  28. [28]
    C.S. Fischer and J.M. Pawlowski, Uniqueness of infrared asymptotics in Landau gauge Yang-Mills theory II, Phys. Rev. D 80 (2009) 025023 [arXiv:0903.2193] [SPIRES].MathSciNetADSGoogle Scholar
  29. [29]
    A. Sternbeck, E.M. Ilgenfritz, M. Muller-Preussker and A. Schiller, The gluon and ghost propagator and the influence of Gribov copies, Nucl. Phys. Proc. Suppl. 140 (2005) 653 [hep-lat/0409125] [SPIRES].CrossRefADSGoogle Scholar
  30. [30]
    A. Sternbeck, E.M. Ilgenfritz, M. Muller-Preussker and A. Schiller, The influence of Gribov copies on the gluon and ghost propagator, AIP Conf. Proc. 756 (2005) 284 [hep-lat/0412011] [SPIRES].CrossRefADSGoogle Scholar
  31. [31]
    P. Boucaud et al., The infrared behaviour of the pure Yang-Mills Green functions, hep-ph/0507104 [SPIRES].
  32. [32]
    I.L. Bogolubsky, E.M. Ilgenfritz, M. Muller-Preussker and A. Sternbeck, Lattice gluodynamics computation of Landau gauge Green’s functions in the deep infrared, Phys. Lett. B 676 (2009) 69 [arXiv:0901.0736] [SPIRES].ADSGoogle Scholar
  33. [33]
    I.L. Bogolubsky, E.M. Ilgenfritz, M. Muller-Preussker and A. Sternbeck, The Landau gauge gluon and ghost propagators in 4D SU(3) gluodynamics in large lattice volumes, PoS(LATTICE 2007)290 [arXiv:0710.1968] [SPIRES].
  34. [34]
    A. Cucchieri and T. Mendes, What’s up with IR gluon and ghost propagators in Landau gauge? A puzzling answer from huge lattices, PoS(LATTICE 2007)297 [arXiv:0710.0412] [SPIRES].
  35. [35]
    A. Cucchieri and T. Mendes, Constraints on the IR behavior of the gluon propagator in Yang-Mills theories, Phys. Rev. Lett. 100 (2008) 241601 [arXiv:0712.3517] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  36. [36]
    A. Cucchieri and T. Mendes, Landau-gauge propagators in Yang-Mills theories at β = 0: massive solution versus conformal scaling, Phys. Rev. D 81 (2010) 016005 [arXiv:0904.4033] [SPIRES].ADSGoogle Scholar
  37. [37]
    O. Oliveira and P. Bicudo, Running gluon mass from Landau gauge lattice QCD propagator, arXiv:1002.4151 [SPIRES].
  38. [38]
    D. Dudal, O. Oliveira and N. Vandersickel, Indirect lattice evidence for the Refined Gribov-Zwanziger formalism and the gluon condensate A 2 in the Landau gauge, Phys. Rev. D 81 (2010) 074505 [arXiv:1002.2374] [SPIRES].ADSGoogle Scholar
  39. [39]
    V.G. Bornyakov, V.K. Mitrjushkin and M. Muller-Preussker, SU(2) lattice gluon propagator: continuum limit, finite-volume effects and infrared mass scale m IR, Phys. Rev. D 81 (2010) 054503 [arXiv:0912.4475] [SPIRES].ADSGoogle Scholar
  40. [40]
    J.M. Cornwall, Dynamical mass generation in continuum QCD, Phys. Rev. D 26 (1982) 1453 [SPIRES].ADSGoogle Scholar
  41. [41]
    V. Sauli, On the decoupling solution for pinch technique gluon propagator, arXiv:0906.2818 [SPIRES].
  42. [42]
    K.-I. Kondo, Kugo-Ojima color confinement criterion and Gribov-Zwanziger horizon condition, Phys. Lett. B 678 (2009) 322 [arXiv:0904.4897] [SPIRES].MathSciNetADSGoogle Scholar
  43. [43]
    K.-I. Kondo, Infrared behavior of the ghost propagator in the Landau gauge Yang-Mills theory, Prog. Theor. Phys. 122 (2010) 1455 [arXiv:0907.3249] [SPIRES].CrossRefADSGoogle Scholar
  44. [44]
    K.-I. Kondo, Decoupling and scaling solutions in Yang-Mills theory with the Gribov horizon, arXiv:0909.4866 [SPIRES].
  45. [45]
    D. Dudal, S.P. Sorella, N. Vandersickel and H. Verschelde, Gribov no-pole condition, Zwanziger horizon function, Kugo-Ojima confinement criterion, boundary conditions, BRST breaking and all that, Phys. Rev. D 79 (2009) 121701 [arXiv:0904.0641] [SPIRES].MathSciNetADSGoogle Scholar
  46. [46]
    A.C. Aguilar, D. Binosi and J. Papavassiliou, Indirect determination of the Kugo-Ojima function from lattice data, JHEP 11 (2009) 066 [arXiv:0907.0153] [SPIRES].CrossRefADSGoogle Scholar
  47. [47]
    P. Boucaud et al., Gribov’s horizon and the ghost dressing function, Phys. Rev. D 80 (2009) 094501 [arXiv:0909.2615] [SPIRES].ADSGoogle Scholar
  48. [48]
    D. Dudal, S.P. Sorella, N. Vandersickel and H. Verschelde, New features of the gluon and ghost propagator in the infrared region from the Gribov-Zwanziger approach, Phys. Rev. D 77 (2008) 071501 [arXiv:0711.4496] [SPIRES].ADSGoogle Scholar
  49. [49]
    D. Dudal, J.A. Gracey, S.P. Sorella, N. Vandersickel and H. Verschelde, A refinement of the Gribov-Zwanziger approach in the Landau gauge: infrared propagators in harmony with the lattice results, Phys. Rev. D 78 (2008) 065047 [arXiv:0806.4348] [SPIRES].ADSGoogle Scholar
  50. [50]
    M. Frasca, Infrared gluon and ghost propagators, Phys. Lett. B 670 (2008) 73 [arXiv:0709.2042] [SPIRES].ADSGoogle Scholar
  51. [51]
    M. Tissier and N. Wschebor, Infrared propagators of Yang-Mills theory from perturbation theory, Phys. Rev. D 82 (2010) 101701 [arXiv:1004.1607] [SPIRES].ADSGoogle Scholar
  52. [52]
    M. Lavelle, Gauge invariant effective gluon mass from the operator product expansion, Phys. Rev. D 44 (1991) 26 [SPIRES].ADSGoogle Scholar
  53. [53]
    A.C. Aguilar and J. Papavassiliou, Power-law running of the effective gluon mass, Eur. Phys. J. A 35 (2008) 189 [arXiv:0708.4320] [SPIRES].ADSGoogle Scholar
  54. [54]
    A.C. Aguilar, D. Binosi and J. Papavassiliou, Infrared finite effective charge of QCD, PoS(LC2008)050 [arXiv:0810.2333] [SPIRES].
  55. [55]
    D. Binosi and J. Papavassiliou, Pinch technique: theory and applications, Phys. Rept. 479 (2009) 1 [arXiv:0909.2536] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  56. [56]
    A.C. Aguilar, D. Binosi and J. Papavassiliou, QCD effective charges from lattice data, JHEP 07 (2010) 002 [arXiv:1004.1105] [SPIRES].CrossRefADSGoogle Scholar
  57. [57]
    D. Binosi and J. Papavassiliou, Pinch technique and the Batalin-Vilkovisky formalism, Phys. Rev. D 66 (2002) 025024 [hep-ph/0204128] [SPIRES].MathSciNetADSGoogle Scholar
  58. [58]
    P.A. Grassi, T. Hurth and M. Steinhauser, Practical algebraic renormalization, Annals Phys. 288 (2001) 197 [hep-ph/9907426] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  59. [59]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [SPIRES].ADSGoogle Scholar
  60. [60]
    HPQCD collaboration, C.T.H. Davies et al., Update: accurate determinations of α s from realistic lattice QCD, Phys. Rev. D 78 (2008) 114507 [arXiv:0807.1687] [SPIRES].ADSGoogle Scholar
  61. [61]
    M. Lüscher, R. Sommer, P. Weisz and U. Wolff, A precise determination of the running coupling in the SU(3) Yang-Mills theory, Nucl. Phys. B 413 (1994) 481 [hep-lat/9309005] [SPIRES].CrossRefADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Dpto. Física Aplicada, Fac. Ciencias ExperimentalesUniversidad de HuelvaHuelvaSpain

Personalised recommendations