Journal of High Energy Physics

, 2011:104 | Cite as

Towards a two-loop matching of gauge couplings in grand unified theories

Article

Abstract

We calculate the two-loop matching corrections for the gauge couplings at the Grand Unification scale in a general framework that aims at making as few assumptions on the underlying Grand Unified Theory (GUT) as possible. In this paper we present an intermediate result that is general enough to be applied to the Georgi-Glashow SU(5) as a “toy model”. The numerical effects in this theory are found to be larger than the current experimental uncertainty on α s . Furthermore, we give many technical details regarding renormalization procedure, tadpole terms, gauge fixing and the treatment of group theory factors, which is useful preparative work for the extension of the calculation to supersymmetric GUTs.

Keywords

GUT Renormalization Group 

References

  1. [1]
    J.R. Ellis, S. Kelley and D.V. Nanopoulos, Probing the desert using gauge coupling unification, Phys. Lett. B 260 (1991) 131 [SPIRES].ADSGoogle Scholar
  2. [2]
    U. Amaldi, W. de Boer and H. Furstenau, Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP, Phys. Lett. B 260 (1991) 447 [SPIRES].ADSGoogle Scholar
  3. [3]
    P. Langacker and M.-x. Luo, Implications of precision electroweak experiments for M t , ρ 0 , sin2 θ W and grand unification, Phys. Rev. D 44 (1991) 817 [SPIRES].ADSGoogle Scholar
  4. [4]
    K. Hagiwara and Y. Yamada, Grand unification threshold effects in supersymmetric SU(5) models, Phys. Rev. Lett. 70 (1993) 709 [SPIRES].CrossRefADSGoogle Scholar
  5. [5]
    J. Hisano, H. Murayama and T. Yanagida, Nucleon decay in the minimal supersymmetric SU(5) grand unification, Nucl. Phys. B 402 (1993) 46 [hep-ph/9207279] [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    J. Hisano, H. Murayama and T. Yanagida, Probing GUT scale mass spectrum through precision measurements on the weak scale parameters, Phys. Rev. Lett. 69 (1992) 1014 [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    Y. Yamada, SUSY and GUT threshold effects in SUSY SU(5) models, Z. Phys. C 60 (1993) 83 [SPIRES].ADSGoogle Scholar
  8. [8]
    J. Hisano, T. Moroi, K. Tobe and T. Yanagida, Limit on the color triplet Higgs mass in the minimum supersymmetric SU(5) model, Mod. Phys. Lett. A 10 (1995) 2267 [hep-ph/9411298] [SPIRES].ADSGoogle Scholar
  9. [9]
    A. Dedes, A.B. Lahanas, J. Rizos and K. Tamvakis, Threshold effects and radiative electroweak symmetry breaking in SU(5) extensions of the MSSM, Phys. Rev. D 55 (1997) 2955 [hep-ph/9610271] [SPIRES].ADSGoogle Scholar
  10. [10]
    H. Murayama and A. Pierce, Not even decoupling can save minimal supersymmetric SU(5), Phys. Rev. D 65 (2002) 055009 [hep-ph/0108104] [SPIRES].ADSGoogle Scholar
  11. [11]
    I. Dorsner, P. Fileviez Pérez and G. Rodrigo, On Unification and Nucleon Decay in Supersymmetric Grand Unified Theories Based on SU(5), Phys. Lett. B 649 (2007) 197 [hep-ph/0610034] [SPIRES].ADSGoogle Scholar
  12. [12]
    R. Harlander, L. Mihaila and M. Steinhauser, Two-loop matching coefficients for the strong coupling in the MSSM, Phys. Rev. D 72 (2005) 095009 [hep-ph/0509048] [SPIRES].ADSGoogle Scholar
  13. [13]
    A. Bauer, L. Mihaila and J. Salomon, Matching coefficients for α s and m b to \( \mathcal{O}\left( {alpha_s^2} \right) \) in the MSSM, JHEP 02 (2009) 037 [arXiv:0810.5101] [SPIRES].CrossRefADSGoogle Scholar
  14. [14]
    W. Martens, L. Mihaila, J. Salomon and M. Steinhauser, Minimal Supersymmetric SU(5) and Gauge Coupling Unification at Three Loops, Phys. Rev. D 82 (2010) 095013 [arXiv:1008.3070] [SPIRES].ADSGoogle Scholar
  15. [15]
    A. Masiero, D.V. Nanopoulos, K. Tamvakis and T. Yanagida, Naturally Massless Higgs Doublets in Supersymmetric SU(5), Phys. Lett. B 115 (1982) 380 [SPIRES].ADSGoogle Scholar
  16. [16]
    B. Grinstein, A Supersymmetric SU(5) Gauge Theory with No Gauge Hierarchy Problem, Nucl. Phys. B 206 (1982) 387 [SPIRES].CrossRefADSGoogle Scholar
  17. [17]
    T. van Ritbergen, J.A.M. Vermaseren and S.A. Larin, The four-loop β-function in quantum chromodynamics, Phys. Lett. B 400 (1997) 379 [hep-ph/9701390] [SPIRES].ADSGoogle Scholar
  18. [18]
    M. Czakon, The four-loop QCD β-function and anomalous dimensions, Nucl. Phys. B 710 (2005) 485 [hep-ph/0411261] [SPIRES].CrossRefADSGoogle Scholar
  19. [19]
    R.V. Harlander, L. Mihaila and M. Steinhauser, The SUSY-QCD β-function to three loops, Eur. Phys. J. C 63 (2009) 383 [arXiv:0905.4807] [SPIRES].CrossRefADSGoogle Scholar
  20. [20]
    P.M. Ferreira, I. Jack and D.R.T. Jones, The three-loop SSM β-functions, Phys. Lett. B 387 (1996) 80 [hep-ph/9605440] [SPIRES].ADSGoogle Scholar
  21. [21]
    A.G.M. Pickering, J.A. Gracey and D.R.T. Jones, Three loop gauge β-function for the most general single gauge-coupling theory, Phys. Lett. B 510 (2001) 347 [Erratum ibid B 535 (2002) 377] [hep-ph/0104247] [SPIRES].ADSGoogle Scholar
  22. [22]
    I. Jack, D.R.T. Jones and C.G. North, N = 1 supersymmetry and the three loop gauge β-function, Phys. Lett. B 386 (1996) 138 [hep-ph/9606323] [SPIRES].ADSGoogle Scholar
  23. [23]
    L.J. Hall, Grand Unification of Effective Gauge Theories, Nucl. Phys. B 178 (1981) 75 [SPIRES].CrossRefADSGoogle Scholar
  24. [24]
    S. Weinberg, Effective Gauge Theories, Phys. Lett. B 91 (1980) 51 [SPIRES].ADSGoogle Scholar
  25. [25]
    M.B. Einhorn and D.R.T. Jones, The Weak Mixing Angle and Unification Mass in Supersymmetric SU(5), Nucl. Phys. B 196 (1982) 475 [SPIRES].CrossRefADSGoogle Scholar
  26. [26]
    H. Georgi and S.L. Glashow, Unity of All Elementary Particle Forces, Phys. Rev. Lett. 32 (1974) 438 [SPIRES].CrossRefADSGoogle Scholar
  27. [27]
    K. Fujikawa, B.W. Lee and A.I. Sanda, Generalized Renormalizable Gauge Formulation of Spontaneously Broken Gauge Theories, Phys. Rev. D 6 (1972) 2923 [SPIRES].ADSGoogle Scholar
  28. [28]
    R. Santos and A. Barroso, On the renormalization of two Higgs doublet models, Phys. Rev. D 56 (1997) 5366 [hep-ph/9701257] [SPIRES].ADSGoogle Scholar
  29. [29]
    G. Girardi, C. Malleville and P. Sorba, General Treatment Of The Nonlinear R (Epsilon) Gauge Condition, Phys. Lett. B 117 (1982) 64 [SPIRES].MathSciNetADSGoogle Scholar
  30. [30]
    M.B. Gavela, G. Girardi, C. Malleville and P. Sorba, A Nonlinear R(Xi) Gauge Condition For The Electroweak SU(2) × U(1) Model, Nucl. Phys. B 193 (1981) 257 [SPIRES].CrossRefADSGoogle Scholar
  31. [31]
    T. Muta, Foundations of quantum chromodynamics, second edition, World Sci. Lect. Notes Phys. 57 (1998) 1.Google Scholar
  32. [32]
    P. Langacker, Grand Unified Theories and Proton Decay, Phys. Rept. 72 (1981) 185 [SPIRES].CrossRefADSGoogle Scholar
  33. [33]
    D. Bardin and G. Passarino, The Standard Model in the Making: Precision Study of the Electroweak Interactions, Oxford University Press, Oxford U.K. (1999).Google Scholar
  34. [34]
    M. Böhm, H. Spiesberger and W. Hollik, On the One Loop Renormalization of the Electroweak Standard Model and Its Application to Leptonic Processes, Fortsch. Phys. 34 (1986) 687 [SPIRES].CrossRefADSGoogle Scholar
  35. [35]
    P.H. Chankowski, S. Pokorski and J. Rosiek, Complete on-shell renormalization scheme for the minimal supersymmetric Higgs sector, Nucl. Phys. B 423 (1994) 437 [hep-ph/9303309] [SPIRES].CrossRefADSGoogle Scholar
  36. [36]
    M.E. Machacek and M.T. Vaughn, Two Loop Renormalization Group Equations in a General Quantum Field Theory. 1. Wave Function Renormalization, Nucl. Phys. B 222 (1983) 83 [SPIRES].CrossRefADSGoogle Scholar
  37. [37]
    M.E. Machacek and M.T. Vaughn, Two Loop Renormalization Group Equations in a General Quantum Field Theory. 2. Yukawa Couplings, Nucl. Phys. B 236 (1984) 221 [SPIRES].CrossRefADSGoogle Scholar
  38. [38]
    T. Appelquist and J. Carazzone, Infrared Singularities and Massive Fields, Phys. Rev. D 11 (1975) 2856 [SPIRES].ADSGoogle Scholar
  39. [39]
    B.A. Ovrut and H.J. Schnitzer, Low-energy And Threshold Calculations Using Effective Field Theory, Nucl. Phys. B 184 (1981) 109 [SPIRES].CrossRefADSGoogle Scholar
  40. [40]
    B.A. Ovrut and H.J. Schnitzer, Effective Field Theories And Higher Dimension Operators, Phys. Rev. D 24 (1981) 1695 [SPIRES].ADSGoogle Scholar
  41. [41]
    B.A. Ovrut and H.J. Schnitzer, A New Approach To Effective Field Theories, Phys. Rev. D 21 (1980) 3369 [SPIRES].ADSGoogle Scholar
  42. [42]
    B.A. Ovrut and H.J. Schnitzer, Decoupling Theorems For Effective Field Theories, Phys. Rev. D 22 (1980) 2518 [SPIRES].ADSGoogle Scholar
  43. [43]
    B.A. Ovrut and H.J. Schnitzer, The Decoupling Theorem And Minimal Subtraction, Phys. Lett. B 100 (1981) 403 [SPIRES].ADSGoogle Scholar
  44. [44]
    B.A. Ovrut and H.J. Schnitzer, Gauge Theories With Minimal Subtraction And The Decoupling Theorem, Nucl. Phys. B 179 (1981) 381 [SPIRES].CrossRefADSGoogle Scholar
  45. [45]
    B.A. Ovrut and H.J. Schnitzer, Gauge Theory And Effective Lagrangian, Nucl. Phys. B 189 (1981) 509 [SPIRES].CrossRefADSGoogle Scholar
  46. [46]
    B.A. Ovrut and H.J. Schnitzer, Effective Field Theory In Background Field Gauge, Phys. Lett. B 110 (1982) 139. ADSGoogle Scholar
  47. [47]
    H. Georgi, Effective field theory, Ann. Rev. Nucl. Part. Sci. 43 (1993) 209 [SPIRES].ADSCrossRefGoogle Scholar
  48. [48]
    M. Steinhauser, Results and techniques of multi-loop calculations, Phys. Rept. 364 (2002) 247 [hep-ph/0201075] [SPIRES].MATHCrossRefADSGoogle Scholar
  49. [49]
    K.G. Chetyrkin, B.A. Kniehl and M. Steinhauser, Decoupling relations to O(α s 3 ) and their connection to low-energy theorems, Nucl. Phys. B 510 (1998) 61 [hep-ph/9708255] [SPIRES].CrossRefADSGoogle Scholar
  50. [50]
    P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279 [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  51. [51]
    T. Seidensticker, Automatic application of successive asymptotic expansions of Feynman diagrams, hep-ph/9905298 [SPIRES].
  52. [52]
    R. Harlander, T. Seidensticker and M. Steinhauser, Complete corrections of O(αα s) to the decay of the Z boson into bottom quarks, Phys. Lett. B 426 (1998) 125 [hep-ph/9712228] [SPIRES].ADSGoogle Scholar
  53. [53]
    J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [SPIRES].
  54. [54]
    A.I. Davydychev and J.B. Tausk, Two loop selfenergy diagrams with different masses and the momentum expansion, Nucl. Phys. B 397 (1993) 123 [SPIRES].CrossRefADSGoogle Scholar
  55. [55]
    S.A. Larin, F.V. Tkachov and J.A.M. Vermaseren, The Form Version Of Mincer, report NIKHEF-H-91-18 [SPIRES].
  56. [56]
    M. Steinhauser, MATAD: A program package for the computation of massive tadpoles, Comput. Phys. Commun. 134 (2001) 335 [hep-ph/0009029] [SPIRES].MATHCrossRefADSGoogle Scholar
  57. [57]
    J.A.M. Vermaseren, Axodraw, Comput. Phys. Commun. 83 (1994) 45 [SPIRES].MATHCrossRefADSGoogle Scholar
  58. [58]
    T.N. Sherry, Higgs Potential In The SU(5) Model, J. Phys. A 13 (1980) 2205 [SPIRES].ADSGoogle Scholar
  59. [59]
    Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].ADSGoogle Scholar
  60. [60]
    T. Teubner, K. Hagiwara, R. Liao, A.D. Martin and D. Nomura, Update of g-2 of the muon and Delta alpha, arXiv:1001.5401 [SPIRES].
  61. [61]
    S. Bethke, The 2009 Wolrd Average of α s(M Z), Eur. Phys. J. C 64 (2009) 689 [arXiv:0908.1135] [SPIRES].CrossRefADSGoogle Scholar
  62. [62]
    CDF and D0 collaboration and others, Combination of CDF and D0 Results on the Mass of the Top Quark, arXiv:1007.3178 [SPIRES].
  63. [63]
    K.G. Chetyrkin et al., Charm and Bottom Quark Masses: an Update, Phys. Rev. D 80 (2009) 074010 [arXiv:0907.2110] [SPIRES].ADSGoogle Scholar
  64. [64]
    K.G. Chetyrkin, J.H. Kuhn and M. Steinhauser, RunDec: A Mathematica package for running and decoupling of the strong coupling and quark masses, Comput. Phys. Commun. 133 (2000) 43 [hep-ph/0004189] [SPIRES].MATHCrossRefADSGoogle Scholar
  65. [65]
    D.R.T. Jones, The Two Loop β-function for a G(1) × G 2 Gauge Theory, Phys. Rev. D 25 (1982) 581 [SPIRES].ADSGoogle Scholar
  66. [66]
    C. Ford, I. Jack and D.R.T. Jones, The Standard Model Effective Potential at Two Loops, Nucl. Phys. B 387 (1992) 373 [Erratum ibid B 504 (1997) 551] [hep-ph/0111190] [SPIRES].CrossRefADSGoogle Scholar
  67. [67]
    O.V. Tarasov, A.A. Vladimirov and A.Y. Zharkov, The Gell-Mann-Low Function of QCD in the Three Loop Approximation, Phys. Lett. B 93 (1980) 429 [SPIRES].ADSGoogle Scholar
  68. [68]
    S.A. Larin and J.A.M. Vermaseren, The Three loop QCD β-function and anomalous dimensions, Phys. Lett. B 303 (1993) 334 [hep-ph/9302208] [SPIRES].ADSGoogle Scholar
  69. [69]
    P. Binetruy and T. Schucker, The Use Of Dimensional Renormalization Schemes In Unified Theories, Nucl. Phys. B 178 (1981) 307 [SPIRES].CrossRefADSGoogle Scholar
  70. [70]
    R. van Damme, The Two Loop Renormalization Of The Gauge Coupling And The Scalar Potential For An Arbitrary Renormalizable Field Theory, Nucl. Phys. B 227 (1983) 317 [Erratum ibid B 239 (1984) 656] [SPIRES].CrossRefADSGoogle Scholar
  71. [71]
    T. van Ritbergen, A.N. Schellekens and J.A.M. Vermaseren, Group theory factors for Feynman diagrams, Int. J. Mod. Phys. A 14 (1999) 41 [hep-ph/9802376] [SPIRES].ADSGoogle Scholar
  72. [72]
    P. Cvitanovic, Group Theory For Feynman Diagrams In Nonabelian Gauge Theories: Exceptional Groups, Phys. Rev. D 14 (1976) 1536 [SPIRES].MathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Institut für Theoretische TeilchenphysikKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations