Bi-galileon theory II: phenomenology

  • Antonio Padilla
  • Paul M. Saffin
  • Shuang-Yong Zhou
Article

Abstract

We continue to introduce bi-galileon theory, the generalisation of the single galileon model introduced by Nicolis et al. The theory contains two coupled scalar fields and is described by a Lagrangian that is invariant under Galilean shifts in those fields. This paper is the second of two, and focuses on the phenomenology of the theory. We are particularly interesting in models that admit solutions that are asymptotically self accelerating or asymptotically self tuning. In contrast to the single galileon theories, we find examples of self accelerating models that are simultaneously free from ghosts, tachyons and tadpoles, able to pass solar system constraints through Vainshtein screening, and do not suffer from problems with superluminality, Cerenkov emission or strong coupling. We also find self tuning models and discuss how Weinberg’s no go theorem is evaded by breaking Poincaré invariance in the scalar sector. Whereas the galileon description is valid all the way down to solar system scales for the self-accelerating models, unfortunately the same cannot be said for self tuning models owing to the scalars backreacting strongly on to the geometry.

Keywords

Large Extra Dimensions Cosmology of Theories beyond the SM Classical Theories of Gravity 

References

  1. [1]
    A. Nicolis, R. Rattazzi and E. Trincherini, The galileon as a local modification of gravity, Phys. Rev. D 79 (2009) 064036 [arXiv:0811.2197] [SPIRES].MathSciNetADSGoogle Scholar
  2. [2]
    G.R. Dvali, G. Gabadadze and M. Porrati, 4D gravity on a brane in 5D Minkowski space, Phys. Lett. B 485 (2000) 208 [hep-th/0005016] [SPIRES].MathSciNetADSGoogle Scholar
  3. [3]
    I.I. Kogan, S. Mouslopoulos, A. Papazoglou, G.G. Ross and J. Santiago, A three three-brane universe: New phenomenology for the new millennium?, Nucl. Phys. B 584 (2000) 313 [hep-ph/9912552] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  4. [4]
    I.I. Kogan and G.G. Ross, Brane universe and multigravity: Modification of gravity at large and small distances, Phys. Lett. B 485 (2000) 255 [hep-th/0003074] [SPIRES].MathSciNetADSGoogle Scholar
  5. [5]
    R. Gregory, V.A. Rubakov and S.M. Sibiryakov, Opening up extra dimensions at ultra-large scales, Phys. Rev. Lett. 84 (2000) 5928 [hep-th/0002072] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  6. [6]
    R. Gregory, V.A. Rubakov and S.M. Sibiryakov, Gravity and antigravity in a brane world with metastable gravitons, Phys. Lett. B 489 (2000) 203 [hep-th/0003045] [SPIRES].ADSGoogle Scholar
  7. [7]
    A. Padilla, Ghost-free braneworld bigravity, Class. Quant. Grav. 21 (2004) 2899 [hep-th/0402079] [SPIRES].CrossRefMathSciNetADSMATHGoogle Scholar
  8. [8]
    A. Padilla, Cosmic acceleration from asymmetric branes, Class. Quant. Grav. 22 (2005) 681 [hep-th/0406157] [SPIRES].CrossRefMathSciNetADSMATHGoogle Scholar
  9. [9]
    A. Padilla, Infra-red modification of gravity from asymmetric branes, Class. Quant. Grav. 22 (2005) 1087 [hep-th/0410033] [SPIRES].CrossRefMathSciNetADSMATHGoogle Scholar
  10. [10]
    C. Charmousis, R. Gregory and A. Padilla, Stealth acceleration and modified gravity, JCAP 10 (2007) 006 [arXiv:0706.0857] [SPIRES].MathSciNetADSGoogle Scholar
  11. [11]
    M.A. Luty, M. Porrati and R. Rattazzi, Strong interactions and stability in the DGP model, JHEP 09 (2003) 029 [hep-th/0303116] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  12. [12]
    A. Nicolis and R. Rattazzi, Classical and quantum consistency of the DGP model, JHEP 06 (2004) 059 [hep-th/0404159] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  13. [13]
    C. Deffayet, Cosmology on a brane in Minkowski bulk, Phys. Lett. B 502 (2001) 199 [hep-th/0010186] [SPIRES].ADSGoogle Scholar
  14. [14]
    C. Deffayet, G.R. Dvali and G. Gabadadze, Accelerated universe from gravity leaking to extra dimensions, Phys. Rev. D 65 (2002) 044023 [astro-ph/0105068] [SPIRES].MathSciNetADSGoogle Scholar
  15. [15]
    C. Charmousis, R. Gregory, N. Kaloper and A. Padilla, DGP specteroscopy, JHEP 10 (2006) 066 [hep-th/0604086] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  16. [16]
    R. Gregory, N. Kaloper, R.C. Myers and A. Padilla, A new perspective on DGP gravity, JHEP 10 (2007) 069 [arXiv:0707.2666] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  17. [17]
    A. Padilla, A short review of ’DGP Specteroscopy’, J. Phys. A 40 (2007) 6827 [hep-th/0610093] [SPIRES].ADSGoogle Scholar
  18. [18]
    K. Koyama, Are there ghosts in the self-accelerating brane universe?, Phys. Rev. D 72 (2005) 123511 [hep-th/0503191] [SPIRES].ADSGoogle Scholar
  19. [19]
    D. Gorbunov, K. Koyama and S. Sibiryakov, More on ghosts in DGP model, Phys. Rev. D 73 (2006) 044016 [hep-th/0512097] [SPIRES].ADSGoogle Scholar
  20. [20]
    K. Koyama, A. Padilla and F.P. Silva, Ghosts in asymmetric brane gravity and the decoupled stealth limit, JHEP 03 (2009) 134 [arXiv:0901.0713] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  21. [21]
    C. Deffayet, G.R. Dvali, G. Gabadadze and A.I. Vainshtein, Nonperturbative continuity in graviton mass versus perturbative discontinuity, Phys. Rev. D 65 (2002) 044026 [hep-th/0106001] [SPIRES].ADSGoogle Scholar
  22. [22]
    G. Dvali, Predictive power of strong coupling in theories with large distance modified gravity, New J. Phys. 8 (2006) 326 [hep-th/0610013] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  23. [23]
    C. Burrage and D. Seery, Revisiting fifth forces in the Galileon model, JCAP 08 (2010) 011 [arXiv:1005.1927] [SPIRES].ADSGoogle Scholar
  24. [24]
    A. Ali, R. Gannouji and M. Sami, Modified gravity a la Galileon: Late time cosmic acceleration and observational constraints, Phys. Rev. D 82 (2010) 103015 [arXiv:1008.1588] [SPIRES].ADSGoogle Scholar
  25. [25]
    C. Deffayet, O. Pujolàs, I. Sawicki and A. Vikman, Imperfect dark energy from Kinetic gravity braiding, JCAP 10 (2010) 026 [arXiv:1008.0048] [SPIRES].ADSGoogle Scholar
  26. [26]
    A. Padilla, P.M. Saffin and S.-Y. Zhou, Bi-galileon theory I: motivation and formulation, JHEP 12 (2010) 031 [arXiv:1007.5424] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  27. [27]
    D.B. Fairlie, J. Govaerts and A. Morozov, Universal field equations with covariant solutions D.B. Fairlie, Nucl. Phys. B 373 (1992) 214 [hep-th/9110022] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  28. [28]
    D.B. Fairlie and J. Govaerts, Euler hierarchies and universal equations, J. Math. Phys. 33 (1992) 3543 [hep-th/9204074] [SPIRES].CrossRefMathSciNetADSMATHGoogle Scholar
  29. [29]
    C. Deffayet, S. Deser and G. Esposito-Farese, Arbitrary p-form Galileons, Phys. Rev. D 82 (2010) 061501 [arXiv:1007.5278] [SPIRES].ADSGoogle Scholar
  30. [30]
    A. Padilla, P.M. Saffin and S.-Y. Zhou, Multi-galileons, solitons and Derrick’s theorem, arXiv:1008.0745 [SPIRES].
  31. [31]
    K. Hinterbichler, M. Trodden and D. Wesley, Multi-field galileons and higher co-dimension branes, Phys. Rev. D 82 (2010) 124018 [arXiv:1008.1305] [SPIRES].ADSGoogle Scholar
  32. [32]
    C. de Rham et al., Cascading gravity: Extending the Dvali-Gabadadze-Porrati model to higher dimension, Phys. Rev. Lett. 100 (2008) 251603 [arXiv:0711.2072] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  33. [33]
    C. de Rham, S. Hofmann, J. Khoury and A.J. Tolley, Cascading gravity and degravitation, JCAP 02 (2008) 011 [arXiv:0712.2821] [SPIRES].Google Scholar
  34. [34]
    C. de Rham, An introduction to cascading gravity and degravitation, Can. J. Phys. 87 (2009) 201 [arXiv:0810.0269] [SPIRES].CrossRefADSGoogle Scholar
  35. [35]
    C. de Rham, J. Khoury and A.J. Tolley, Flat 3-brane with tension in cascading gravity, Phys. Rev. Lett. 103 (2009) 161601 [arXiv:0907.0473] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  36. [36]
    M. Minamitsuji, Self-accelerating solutions in cascading DGP braneworld, Phys. Lett. B 684 (2010) 92 [arXiv:0806.2390] [SPIRES].MathSciNetADSGoogle Scholar
  37. [37]
    N. Agarwal, R. Bean, J. Khoury and M. Trodden, Cascading cosmology, Phys. Rev. D 81 (2010) 084020 [arXiv:0912.3798] [SPIRES].ADSGoogle Scholar
  38. [38]
    O. Corradini, K. Koyama and G. Tasinato, Induced gravity on intersecting brane-worlds Part I: Maximally symmetric solutions, Phys. Rev. D 77 (2008) 084006 [arXiv:0712.0385] [SPIRES].MathSciNetADSGoogle Scholar
  39. [39]
    O. Corradini, K. Koyama and G. Tasinato, Induced gravity on intersecting brane-worlds Part II: Cosmology, Phys. Rev. D 78 (2008) 124002 [arXiv:0803.1850] [SPIRES].MathSciNetADSGoogle Scholar
  40. [40]
    J.M. Cline, J. Descheneau, M. Giovannini and J. Vinet, Cosmology of codimension-two braneworlds, JHEP 06 (2003) 048 [hep-th/0304147] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  41. [41]
    J. Vinet and J.M. Cline, Can codimension-two branes solve the cosmological constant problem?, Phys. Rev. D 70 (2004) 083514 [hep-th/0406141] [SPIRES].ADSGoogle Scholar
  42. [42]
    Y. Aghababaie, C.P. Burgess, S.L. Parameswaran and F. Quevedo, Towards a naturally small cosmological constant from branes in 6D supergravity, Nucl. Phys. B 680 (2004) 389 [hep-th/0304256] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  43. [43]
    C.P. Burgess, Supersymmetric large extra dimensions and the cosmological constant: An update, Ann. Phys. 313 (2004) 283 [hep-th/0402200] [SPIRES].MathSciNetGoogle Scholar
  44. [44]
    C.P. Burgess, Towards a natural theory of dark energy: Supersymmetric large extra dimensions, AIP Conf. Proc. 743 (2005) 417 [hep-th/0411140] [SPIRES].CrossRefADSGoogle Scholar
  45. [45]
    N. Kaloper and D. Kiley, Charting the landscape of modified gravity, JHEP 05 (2007) 045 [hep-th/0703190] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  46. [46]
    N. Kaloper, Brane induced gravity: codimension-2, Mod. Phys. Lett. A 23 (2008) 781 [arXiv:0711.3210] [SPIRES].MathSciNetADSGoogle Scholar
  47. [47]
    C. Charmousis, G. Kofinas and A. Papazoglou, The consistency of codimension-2 braneworlds and their cosmology, JCAP 01 (2010) 022 [arXiv:0907.1640] [SPIRES].ADSGoogle Scholar
  48. [48]
    C. Charmousis and A. Papazoglou, Properties of codimension-2 braneworlds in six-dimensional Lovelock theory, J. Phys. Conf. Ser. 189 (2009) 012007 [arXiv:0902.2174] [SPIRES].CrossRefADSGoogle Scholar
  49. [49]
    C. Charmousis and A. Papazoglou, Self-properties of codimension-2 braneworlds, JHEP 07 (2008) 062 [arXiv:0804.2121] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  50. [50]
    E. Papantonopoulos, A. Papazoglou and V. Zamarias, Induced cosmology on a regularized brane in six-dimensional flux compactification, Nucl. Phys. B 797 (2008) 520 [arXiv:0707.1396] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  51. [51]
    E. Papantonopoulos, A. Papazoglou and V. Zamarias, Regularization of conical singularities in warped six-dimensional compactifications, JHEP 03 (2007) 002 [hep-th/0611311] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  52. [52]
    B. Cuadros-Melgar, E. Papantonopoulos, M. Tsoukalas and V. Zamarias, Black holes on thin 3-branes of codimension-2 and their extension into the bulk, Nucl. Phys. B 810 (2009) 246 [arXiv:0804.4459] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  53. [53]
    B. Cuadros-Melgar, E. Papantonopoulos, M. Tsoukalas and V. Zamarias, BTZ like-string on codimension-2 braneworlds in the thin brane limit, Phys. Rev. Lett. 100 (2008) 221601 [arXiv:0712.3232] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  54. [54]
    E.J. Copeland, M. Sami and S. Tsujikawa, Dynamics of dark energy, Int. J. Mod. Phys. D 15 (2006) 1753 [hep-th/0603057] [SPIRES].MathSciNetADSGoogle Scholar
  55. [55]
    Supernova Search Team collaboration, A.G. Riess et al., Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J. 116 (1998) 1009 [astro-ph/9805201] [SPIRES].CrossRefADSGoogle Scholar
  56. [56]
    Supernova Search Team collaboration, A.G. Riess et al., Type Ia supernova discoveries at z > 1 from the hubble space telescope: evidence for past deceleration and constraints on dark energy evolution, Astrophys. J. 607 (2004) 665 [astro-ph/0402512] [SPIRES].CrossRefADSGoogle Scholar
  57. [57]
    Supernova Cosmology Project collaboration, S. Perlmutter et al., Measurements of Ω and Λ from 42 high-redshift supernovae, Astrophys. J. 517 (1999) 565 [astro-ph/9812133] [SPIRES].CrossRefADSGoogle Scholar
  58. [58]
    WMAP collaboration, D.N. Spergel et al., Wilkinson Microwave Anisotropy Probe (WMAP) three year results: Implications for cosmology, Astrophys. J. Suppl. 170 (2007) 377 [astro-ph/0603449] [SPIRES].CrossRefADSGoogle Scholar
  59. [59]
    S. Weinberg, The cosmological constant problem, Rev. Mod. Phys. 61 (1989) 1 [SPIRES].CrossRefMathSciNetADSMATHGoogle Scholar
  60. [60]
    S.L. Dubovsky and V.A. Rubakov, Brane-induced gravity in more than one extra dimensions: Violation of equivalence principle and ghost, Phys. Rev. D 67 (2003) 104014 [hep-th/0212222] [SPIRES].ADSGoogle Scholar
  61. [61]
    G. Gabadadze and M. Shifman, Softly massive gravity, Phys. Rev. D 69 (2004) 124032 [hep-th/0312289] [SPIRES].ADSGoogle Scholar
  62. [62]
    H. van Dam and M.J.G. Veltman, Massive and massless Yang-Mills and gravitational fields, Nucl. Phys. B 22 (1970) 397 [SPIRES].ADSGoogle Scholar
  63. [63]
    V.I. Zakharov, Linearized gravitation theory and the graviton mass, JETP Lett. 12 (1970) 3112 [Pisma Zh. Eksp. Teor. Fiz. 12 (1970) 447] [SPIRES].Google Scholar
  64. [64]
    J. Khoury and A. Weltman, Chameleon fields: awaiting surprises for tests of gravity in space, Phys. Rev. Lett. 93 (2004) 171104 [astro-ph/0309300] [SPIRES].CrossRefADSGoogle Scholar
  65. [65]
    J. Khoury and A. Weltman, Chameleon cosmology, Phys. Rev. D 69 (2004) 044026 [astro-ph/0309411] [SPIRES].MathSciNetADSGoogle Scholar
  66. [66]
    D.F. Mota and J.D. Barrow, Varying α in a more realistic universe, Phys. Lett. B 581 (2004) 141 [astro-ph/0306047] [SPIRES].ADSGoogle Scholar
  67. [67]
    A.I. Vainshtein, To the problem of nonvanishing gravitation mass, Phys. Lett. B 39 (1972) 393 [SPIRES].ADSGoogle Scholar
  68. [68]
    C.M. Will, The confrontation between general relativity and experiment, Living Rev. Rel. 9 (2005) 3 [gr-qc/0510072] [SPIRES].Google Scholar
  69. [69]
    R. Scoccimarro, Large-scale structure in brane-induced gravity I. perturbation theory, Phys. Rev. D 80 (2009) 104006 [arXiv:0906.4545] [SPIRES].ADSGoogle Scholar
  70. [70]
    K.C. Chan and R. Scoccimarro, Large-scale structure in brane-induced gravity II. Numerical simulations, Phys. Rev. D 80 (2009) 104005 [arXiv:0906.4548] [SPIRES].ADSGoogle Scholar
  71. [71]
    L. Hui, A. Nicolis and C. Stubbs, Equivalence principle implications of modified gravity models, Phys. Rev. D 80 (2009) 104002 [arXiv:0905.2966] [SPIRES].ADSGoogle Scholar
  72. [72]
    F. Bauer, J. Solà and H. Stefancic, Dynamically avoiding fine-tuning the cosmological constant: the ’Relaxed Universe’, JCAP 12 (2010) 029 [arXiv:1006.3944] [SPIRES].ADSGoogle Scholar
  73. [73]
    C. Deffayet, G. Esposito-Farese and A. Vikman, Covariant galileon, Phys. Rev. D 79 (2009) 084003 [arXiv:0901.1314] [SPIRES].ADSGoogle Scholar
  74. [74]
    C. Deffayet, S. Deser and G. Esposito-Farese, Generalized Galileons: All scalar models whose curved background extensions maintain second-order field equations and stress-tensors, Phys. Rev. D 80 (2009) 064015 [arXiv:0906.1967] [SPIRES].ADSGoogle Scholar
  75. [75]
    C. de Rham and A.J. Tolley, DBI and the Galileon reunited, JCAP 05 (2010) 015 [arXiv:1003.5917] [SPIRES].Google Scholar
  76. [76]
    K. Hinterbichler and J. Khoury, Symmetron fields: Screening long-range forces through local symmetry restoration, Phys. Rev. Lett. 104 (2010) 231301 [arXiv:1001.4525] [SPIRES].CrossRefADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Antonio Padilla
    • 1
  • Paul M. Saffin
    • 1
  • Shuang-Yong Zhou
    • 1
  1. 1.School of Physics and AstronomyUniversity of NottinghamNottinghamU.K.

Personalised recommendations