Advertisement

Continuous Hawking-Page transitions in Einstein-scalar gravity

  • Umut Gürsoy
Open Access
Article

Abstract

We investigate continuous Hawking-Page transitions in Einstein’s gravity coupled to a scalar field with an arbitrary potential in the weak gravity limit. We show that this is only possible in a singular limit where the black-hole horizon marginally traps a curvature singularity. Depending on the subleading terms in the potential, a rich variety of continuous phase transitions arise. Our examples include second and higher order, including the Berezinskii-Kosterlitz-Thouless type. In the case when the scalar is dilaton, the condition for continuous phase transitions lead to (asymptotically) linear-dilaton background. We obtain the scaling laws of thermodynamic functions, as well as the viscosity coefficients near the transition. In the limit of weak gravitational interactions, the bulk viscosity asymptotes to a universal constant, independent of the details of the scalar potential. As a byproduct of our analysis we obtain a one-parameter family of kink solutions in arbitrary dimension d that interpolate between AdS near the boundary and linear-dilaton background in the deep interior. The continuous Hawking-Page transitions found here serve as holographic models for normal-to superfluid transitions.

Keywords

Classical Theories of Gravity Black Holes Gauge-gravity correspondence Black Holes in String Theory 

References

  1. [1]
    S.W. Hawking and D.N. Page, Thermodynamics of black holes in Anti-de Sitter space, Commun. Math. Phys. 87 (1983) 577 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  2. [2]
    E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [SPIRES].zbMATHMathSciNetGoogle Scholar
  3. [3]
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].zbMATHMathSciNetADSGoogle Scholar
  4. [4]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].MathSciNetADSGoogle Scholar
  5. [5]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].zbMATHMathSciNetGoogle Scholar
  6. [6]
    U. Gürsoy, E. Kiritsis, L. Mazzanti and F. Nitti, Deconfinement and gluon plasma dynamics in improved holographic QCD, Phys. Rev. Lett. 101 (2008) 181601 [arXiv:0804.0899] [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    U. Gürsoy and E. Kiritsis, Exploring improved holographic theories for QCD: part I, JHEP 02 (2008) 032 [arXiv:0707.1324] [SPIRES].CrossRefGoogle Scholar
  8. [8]
    U. Gürsoy, E. Kiritsis and F. Nitti, Exploring improved holographic theories for QCD: part II, JHEP 02 (2008) 019 [arXiv:0707.1349] [SPIRES].CrossRefGoogle Scholar
  9. [9]
    U. Gürsoy, E. Kiritsis, L. Mazzanti and F. Nitti, Holography and thermodynamics of 5D dilaton-gravity, JHEP 05 (2009) 033 [arXiv:0812.0792] [SPIRES].CrossRefGoogle Scholar
  10. [10]
    A. Buchel, Critical phenomena in N = 4 SYM plasma, Nucl. Phys. B 841 (2010) 59 [arXiv:1005.0819] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  11. [11]
    U. Gursoy, to appear.Google Scholar
  12. [12]
    J.M. Kosterlitz and D.J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems, J. Phys. C 6 (1973) 1181 [SPIRES].ADSGoogle Scholar
  13. [13]
    V.L. Berezinsky, Destruction of long range order in one-dimensional and two-dimensional systems having a continuous symmetry group. 1. Classical systems, Sov. Phys. JETP 32 (1971) 493 [SPIRES].ADSGoogle Scholar
  14. [14]
    K. Jensen, A. Karch, D.T. Son and E.G. Thompson, Holographic Berezinskii-Kosterlitz-Thouless transitions, Phys. Rev. Lett. 105 (2010) 041601 [arXiv:1002.3159] [SPIRES].CrossRefADSGoogle Scholar
  15. [15]
    N. Iqbal, H. Liu, M. Mezei and Q. Si, Quantum phase transitions in holographic models of magnetism and superconductors, Phys. Rev. D 82 (2010) 045002 [arXiv:1003.0010] [SPIRES].ADSGoogle Scholar
  16. [16]
    G. Clement, J.C. Fabris and G.T. Marques, Hawking radiation of linear dilaton black holes, Phys. Lett. B 651 (2007) 54 [arXiv:0704.0399] [SPIRES].MathSciNetADSGoogle Scholar
  17. [17]
    J. Polchinski, String theory. Volume I, Cambridge University Press, Cambridge U.K. (2005).Google Scholar
  18. [18]
    B.I. Halperin and D.R. Nelson, Theory of two-dimensional melting, Phys. Rev. Lett. 41 (1978) 121. CrossRefMathSciNetADSGoogle Scholar
  19. [19]
    W. Janke, D.A. Johnston and R. Kenna, Properties of higher-order phase transitions, Nucl. Phys. B 736 (2006) 319 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  20. [20]
    G. Policastro, D.T. Son and A.O. Starinets, The shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 87 (2001) 081601 [hep-th/0104066] [SPIRES].CrossRefADSGoogle Scholar
  21. [21]
    A. Buchel and J.T. Liu, Universality of the shear viscosity in supergravity, Phys. Rev. Lett. 93 (2004) 090602 [hep-th/0311175] [SPIRES].CrossRefADSGoogle Scholar
  22. [22]
    S.S. Gubser, S.S. Pufu and F.D. Rocha, Bulk viscosity of strongly coupled plasmas with holographic duals, JHEP 08 (2008) 085 [arXiv:0806.0407] [SPIRES].CrossRefADSGoogle Scholar
  23. [23]
    U. Gürsoy, E. Kiritsis, G. Michalogiorgakis and F. Nitti, Thermal transport and drag force in improved holographic QCD, JHEP 12 (2009) 056 [arXiv:0906.1890] [SPIRES].CrossRefGoogle Scholar
  24. [24]
    R. Kubo, Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems, J. Phys. Soc. Japan 12 (1957) 570. CrossRefMathSciNetADSGoogle Scholar
  25. [25]
    J.M. Kosterlitz, The critical properties of the two-dimensional xy model, J. Phys. C7 (1974) 1046 [SPIRES].ADSGoogle Scholar
  26. [26]
    E. D’Hoker and D.Z. Freedman, Supersymmetric gauge theories and the AdS/CFT correspondence, hep-th/0201253 [SPIRES].
  27. [27]
    H.A. Chamblin and H.S. Reall, Dynamic dilatonic domain walls, Nucl. Phys. B 562 (1999) 133 [hep-th/9903225] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  28. [28]
    R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) 3427 [gr-qc/9307038] [SPIRES].MathSciNetADSGoogle Scholar
  29. [29]
    S. Bhattacharyya, S. Minwalla and K. Papadodimas, Small hairy black holes in AdS 5 ×S 5, arXiv:1005.1287 [SPIRES].
  30. [30]
    U. Gürsoy, E. Kiritsis, L. Mazzanti and F. Nitti, Improved holographic Yang-Mills at finite temperature: comparison with data, Nucl. Phys. B 820 (2009) 148 [arXiv:0903.2859] [SPIRES].CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations