M5-Branes, D4-Branes and quantum 5D super-Yang-Mills

  • N. Lambert
  • C. Papageorgakis
  • M. Schmidt-Sommerfeld
Open Access
Article

Abstract

We revisit the relation of the six-dimensional (2, 0) M5-brane Conformal Field Theory compactified on S 1 to 5D maximally supersymmetric Yang-Mills Gauge Theory. We show that in the broken phase 5D super-Yang-Mills contains a spectrum of soliton states that can be identified with the complete Kaluza-Klein modes of an M2-brane ending on the M5-branes. This provides evidence that the (2, 0) theory on S 1 is equivalent to 5D super-Yang-Mills with no additional UV degrees of freedom, suggesting that the latter is in fact a well-defined quantum theory and possibly finite.

Keywords

Brane Dynamics in Gauge Theories D-branes Field Theories in Higher Dimensions M-Theory 

References

  1. [1]
    M. Rozali, Matrix theory and U-duality in seven dimensions, Phys. Lett. B 400 (1997) 260 [hep-th/9702136] [SPIRES].MathSciNetADSGoogle Scholar
  2. [2]
    M. Berkooz, M. Rozali and N. Seiberg, Matrix description of M-theory on T 4 and T 5, Phys. Lett. B 408 (1997) 105 [hep-th/9704089] [SPIRES].MathSciNetADSGoogle Scholar
  3. [3]
    N. Seiberg, Notes on theories with 16 supercharges, Nucl. Phys. Proc. Suppl. 67 (1998) 158 [hep-th/9705117] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  4. [4]
    R. Jackiw and C. Rebbi, Solitons with Fermion number 1/2, Phys. Rev. D 13 (1976) 3398 [SPIRES].MathSciNetADSGoogle Scholar
  5. [5]
    H. Osborn, Topological charges for N = 4 supersymmetric gauge theories and monopoles of spin 1, Phys. Lett. B 83 (1979) 321 [SPIRES].ADSGoogle Scholar
  6. [6]
    I.R. Klebanov and A.A. Tseytlin, Entropy of near-extremal black p-branes, Nucl. Phys. B 475 (1996) 164 [hep-th/9604089] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  7. [7]
    A. Strominger, Open p-branes, Phys. Lett. B 383 (1996) 44 [hep-th/9512059] [SPIRES].MathSciNetADSGoogle Scholar
  8. [8]
    P.S. Howe, N.D. Lambert and P.C. West, The self-dual string soliton, Nucl. Phys. B 515 (1998) 203 [hep-th/9709014] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  9. [9]
    E. Witten, Some comments on string dynamics, hep-th/9507121 [SPIRES].
  10. [10]
    N.D. Lambert and D. Tong, Dyonic instantons in five-dimensional gauge theories, Phys. Lett. B 462 (1999) 89 [hep-th/9907014] [SPIRES].ADSGoogle Scholar
  11. [11]
    M.R. Douglas, On D = 5 super Yang-Mills theory and (2, 0) theory, arXiv:1012.2880 [SPIRES].
  12. [12]
    P.S. Howe, N.D. Lambert and P.C. West, The threebrane soliton of the M-fivebrane, Phys. Lett. B 419 (1998) 79 [hep-th/9710033] [SPIRES].MathSciNetADSGoogle Scholar
  13. [13]
    R. D’Auria, S. Ferrara, M.A. Lledó and V.S. Varadarajan, Spinor algebras, J. Geom. Phys. 40 (2001) 101 [hep-th/0010124] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  14. [14]
    J.J. Blanco-Pillado and M. Redi, Supersymmetric rings in field theory, JHEP 09 (2006) 019 [hep-th/0604180] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  15. [15]
    P.S. Howe, G. Sierra and P.K. Townsend, Supersymmetry in six-dimensions, Nucl. Phys. B 221 (1983) 331 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  16. [16]
    P.S. Howe and E. Sezgin, D = 11, p = 5, Phys. Lett. B 394 (1997) 62 [hep-th/9611008] [SPIRES].MathSciNetADSGoogle Scholar
  17. [17]
    P.S. Howe, E. Sezgin and P.C. West, Covariant field equations of the M-theory five-brane, Phys. Lett. B 399 (1997) 49 [hep-th/9702008] [SPIRES].MathSciNetADSGoogle Scholar
  18. [18]
    K.-M. Lee and J.-H. Park, 5D actions for 6D self-dual tensor field theory, Phys. Rev. D 64 (2001) 105006 [hep-th/0008103] [SPIRES].ADSGoogle Scholar
  19. [19]
    N. Lambert and C. Papageorgakis, Nonabelian (2, 0) tensor multiplets and 3-algebras, JHEP 08 (2010) 083 [arXiv:1007.2982] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  20. [20]
    Z. Bern, L.J. Dixon, D.C. Dunbar, M. Perelstein and J.S. Rozowsky, On the relationship between Yang-Mills theory and gravity and its implication for ultraviolet divergences, Nucl. Phys. B 530 (1998) 401 [hep-th/9802162] [SPIRES].CrossRefADSGoogle Scholar
  21. [21]
    Z. Bern, L.J. Dixon, M. Perelstein, D.C. Dunbar and J.S. Rozowsky, Perturbative relations between gravity and gauge theory, Class. Quant. Grav. 17 (2000) 979 [hep-th/9911194] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  22. [22]
    Z. Bern et al., On perturbative gravity and gauge theory, Nucl. Phys. Proc. Suppl. 88 (2000) 194 [hep-th/0002078] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  23. [23]
    I. Kanitscheider, K. Skenderis and M. Taylor, Precision holography for non-conformal branes, JHEP 09 (2008) 094 [arXiv:0807.3324] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  24. [24]
    L. Brink and S.-S. Kim, Maximally supersymmetric Yang-Mills in five dimensions in light-cone superspace, JHEP 12 (2010) 059 [arXiv:1011.5817] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  25. [25]
    B. Collie and D. Tong, The partonic nature of instantons, JHEP 08 (2009) 006 [arXiv:0905.2267] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  26. [26]
    G. Dvali, G.F. Giudice, C. Gomez and A. Kehagias, UV-completion by classicalization, arXiv:1010.1415 [SPIRES].
  27. [27]
    R. Dijkgraaf, E.P. Verlinde and H.L. Verlinde, BPS quantization of the five-brane, Nucl. Phys. B 486 (1997) 89 [hep-th/9604055] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  28. [28]
    M. Henningson, BPS states in (2, 0) theory on R × T 5, JHEP 03 (2009) 021 [arXiv:0901.0785] [SPIRES].CrossRefMathSciNetADSGoogle Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • N. Lambert
    • 1
  • C. Papageorgakis
    • 2
  • M. Schmidt-Sommerfeld
    • 1
  1. 1.Theory DivisionCERNGeneva 23Switzerland
  2. 2.Department of MathematicsKing’s College London, The StrandLondonU.K.

Personalised recommendations