Renormalisation of the non-anticommutativity parameter at two loops

Article

Abstract

We present evidence that the non-anticommutativity parameter for the \( \mathcal{N} = \frac{1}{2} \) supersymmetric SU(N) ⊗ U(1) gauge theory is unrenormalised through two loops.

Keywords

Supersymmetric gauge theory Renormalization Group 

References

  1. [1]
    R. Casalbuoni, Relativity and supersymmetries, Phys. Lett. B 62 (1976) 49 [SPIRES].MathSciNetADSGoogle Scholar
  2. [2]
    R. Casalbuoni, On the quantization of systems with anticommutating variables, Nuovo Cim. A 33 (1976) 115 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  3. [3]
    L. Brink and J.H. Schwarz, Clifford algebra superspace, CALT-68-813 [SPIRES].
  4. [4]
    J.H. Schwarz and P. Van Nieuwenhuizen, Speculations concerning a fermionic substructure of space-time, Lett. Nuovo Cim. 34 (1982) 21 [SPIRES].CrossRefGoogle Scholar
  5. [5]
    S. Ferrara and M.A. Lledó, Some aspects of deformations of supersymmetric field theories, JHEP 05 (2000) 008 [hep-th/0002084] [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    D. Klemm, S. Penati and L. Tamassia, Non(anti)commutative superspace, Class. Quant. Grav. 20 (2003) 2905 [hep-th/0104190] [SPIRES].CrossRefMathSciNetADSMATHGoogle Scholar
  7. [7]
    R. Abbaspur, Generalized noncommutative supersymmetry from a new gauge symmetry, hep-th/0206170 [SPIRES].
  8. [8]
    J. de Boer, P.A. Grassi and P. van Nieuwenhuizen, Non-commutative superspace from string theory, Phys. Lett. B 574 (2003) 98 [hep-th/0302078] [SPIRES].ADSGoogle Scholar
  9. [9]
    H. Ooguri and C. Vafa, The C-deformation of gluino and non-planar diagrams, Adv. Theor. Math. Phys. 7 (2003) 53 [hep-th/0302109] [SPIRES].MathSciNetGoogle Scholar
  10. [10]
    H. Ooguri and C. Vafa, Gravity induced C-deformation, Adv. Theor. Math. Phys. 7 (2004) 405 [hep-th/0303063] [SPIRES].MathSciNetGoogle Scholar
  11. [11]
    N. Berkovits, A new description of the superstring, hep-th/9604123 [SPIRES].
  12. [12]
    N. Seiberg, Noncommutative superspace, N = 1/2 supersymmetry, field theory and string theory, JHEP 06 (2003) 010 [hep-th/0305248] [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    T. Araki, K. Ito and A. Ohtsuka, Supersymmetric gauge theories on noncommutative superspace, Phys. Lett. B 573 (2003) 209 [hep-th/0307076] [SPIRES].MathSciNetADSGoogle Scholar
  14. [14]
    R. Britto, B. Feng and S.-J. Rey, Deformed superspace, N = 1/2 supersymmetry and (non)renormalization theorems, JHEP 07 (2003) 067 [hep-th/0306215] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  15. [15]
    R. Britto, B. Feng and S.-J. Rey, Non(anti)commutativesuperspace,UV/IR mixingandopen Wilson lines, JHEP 08 (2003) 001 [hep-th/0307091] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  16. [16]
    S. Terashima and J.-T. Yee, Comments on noncommutative superspace, JHEP 12 (2003) 053 [hep-th/0306237] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  17. [17]
    R. Britto and B. Feng, N = 1/2 Wess-Zumino model is renormalizable, Phys. Rev. Lett. 91 (2003) 201601 [hep-th/0307165] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  18. [18]
    A. Romagnoni, Renormalizability of N = 1/2 Wess-Zumino model in superspace, JHEP 10 (2003) 016 [hep-th/0307209] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  19. [19]
    O. Lunin and S.-J. Rey, Renormalizability of non(anti)commutative gauge theories with N = 1/2 supersymmetry, JHEP 09 (2003) 045 [hep-th/0307275] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  20. [20]
    M.T. Grisaru, S. Penati and A. Romagnoni, Two-loop renormalization for nonanticommutative N = 1/2 supersymmetric WZ model, JHEP 08 (2003) 003 [hep-th/0307099] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  21. [21]
    I. Jack, D.R.T. Jones and L.A. Worthy, One-loop renormalisation of N = 1/2 supersymmetric gauge theory, Phys. Lett. B 611 (2005) 199 [hep-th/0412009] [SPIRES].MathSciNetADSGoogle Scholar
  22. [22]
    I. Jack, D.R.T. Jones and L.A. Worthy, One-loop renormalisation of general N = 1/2 supersymmetric gauge theory, Phys. Rev. D 72 (2005) 065002 [hep-th/0505248] [SPIRES].ADSGoogle Scholar
  23. [23]
    S. Penati and A. Romagnoni, Covariant quantization of N = 1/2 SYM theories and supergauge invariance, JHEP 02 (2005) 064 [hep-th/0412041] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  24. [24]
    M.T. Grisaru, S. Penati and A. Romagnoni, Non(anti)commutative SYM theory: renormalization in superspace, JHEP 02 (2006) 043 [hep-th/0510175] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  25. [25]
    I. Jack, D.R.T. Jones and L.A. Worthy, One-loop renormalisation of N = 1/2 supersymmetric gauge theory with a superpotential, Phys. Rev. D 75 (2007) 045014 [hep-th/0701096] [SPIRES].ADSGoogle Scholar
  26. [26]
    T. Inami and H. Nakajima, Supersymmetric CP N σ-model on noncommutative superspace, Prog. Theor. Phys. 111 (2004) 961 [hep-th/0402137] [SPIRES].CrossRefMathSciNetADSMATHGoogle Scholar
  27. [27]
    B. Chandrasekhar and A. Kumar, D = 2, N = 2, supersymmetric theories on non(anti)commutative superspace, JHEP 03 (2004) 013 [hep-th/0310137] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  28. [28]
    B. Chandrasekhar, D = 2, N = 2 supersymmetric σ-models on non(anti)commutative superspace, Phys. Rev. D 70 (2004) 125003 [hep-th/0408184] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  29. [29]
    L. Álvarez-Gaumé and M.A. Vazquez-Mozo, On non-anticommutative N = 2 σ-models in two dimensions, JHEP 04 (2005) 007 [hep-th/0503016] [SPIRES].CrossRefGoogle Scholar
  30. [30]
    B. Chandrasekhar, N = 2 σ-model action on non(anti)commutative superspace, Phys. Lett. B 614 (2005) 207 [hep-th/0503116] [SPIRES].MathSciNetADSGoogle Scholar
  31. [31]
    K. Araki, T. Inami, H. Nakajima and Y. Saito, Quantum corrections in 2D SUSY CP N−1 σ-model on noncommutative superspace, JHEP 01 (2006) 109 [hep-th/0508061] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  32. [32]
    I. Jack and R. Purdy, One-loop divergences in the two-dimensional non-anticommutative supersymmetric σ-model, JHEP 05 (2008) 104 [arXiv:0803.2658] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  33. [33]
    I. Jack, D.R.T. Jones and R. Purdy, The non-anticommutative supersymmetric Wess-Zumino model, JHEP 02 (2009) 019 [arXiv:0808.0400] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  34. [34]
    I. Jack, D.R.T. Jones and R. Purdy, The non-anticommutative supersymmetric U(1) gauge theory, JHEP 04 (2009) 028 [arXiv:0901.2876] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  35. [35]
    S. Penati, A. Romagnoni and M. Siani, A renormalizable N = 1/2 SYM theory with interacting matter, JHEP 03 (2009) 112 [arXiv:0901.3094] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  36. [36]
    I. Jack, D.R.T. Jones and L.A. Worthy, Renormalisation of supersymmetric gauge theory in the uneliminated component formalism, Phys. Rev. D 72 (2005) 107701 [hep-th/0509089] [SPIRES].ADSGoogle Scholar
  37. [37]
    D.J. Gross and F. Wilczek, Asymptotically free gauge theories. 1, Phys. Rev. D 8 (1973) 3633 [SPIRES].ADSGoogle Scholar
  38. [38]
    D.R.T. Jones, Asymptotic behavior of supersymmetric Yang-Mills theories in the two loop approximation, Nucl. Phys. B 87 (1975) 127 [SPIRES].CrossRefADSGoogle Scholar
  39. [39]
    M.S. Bianchi, S. Penati, A. Romagnoni and M. Siani, Non-anticommutative U(1) SYM theories: renormalization, fixed points and infrared stability, JHEP 07 (2009) 039 [arXiv:0904.3260] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  40. [40]
    I. Jack, D.R.T. Jones and R. Purdy, A renormalisable non-anticommutative SU(N) × U(1) gauge theory in components, JHEP 11 (2009) 098 [arXiv:0909.1929] [SPIRES].CrossRefADSGoogle Scholar
  41. [41]
    M.E. Machacek and M.T. Vaughn, Two loop renormalization group equations in a general quantum field theory. 1. Wave function renormalization, Nucl. Phys. B 222 (1983) 83 [SPIRES].CrossRefADSGoogle Scholar
  42. [42]
    I. Jack and H. Osborn, General background field calculations with fermion fields, Nucl. Phys. B 249 (1985) 472 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  43. [43]
    P.C. West, The Yukawa β-function in N = 1 rigid supersymmetric theories, Phys. Lett. B 137 (1984) 371 [SPIRES].ADSGoogle Scholar
  44. [44]
    D.Z. Freedman, K. Johnson and J.I. Latorre, Differential regularization and renormalization: a new method of calculation in quantum field theory, Nucl. Phys. B 371 (1992) 353 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  45. [45]
    S. Penati, private communications.Google Scholar
  46. [46]
    A.J. Macfarlane, A. Sudbery and P.H. Weisz, On Gell-Mann’s gamma matrices, d tensors and f tensors, octets and parametrizations of SU(3), Commun. Math. Phys. 11 (1968) 77 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  47. [47]
    J.A. de Azcarraga, A.J. Macfarlane, A.J. Mountain and J.C. Perez Bueno, Invariant tensors for simple groups, Nucl. Phys. B 510 (1998) 657 [physics/9706006] [SPIRES].CrossRefADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Department of Mathematical SciencesUniversity of LiverpoolLiverpoolU.K.

Personalised recommendations