Advertisement

The all-loop integrand for scattering amplitudes in planar \( \mathcal{N} = 4 \) SYM

  • N. Arkani-Hamed
  • J. Bourjaily
  • F. Cachazo
  • S. Caron-Huot
  • J. Trnka
Article

Abstract

We give an explicit recursive formula for the all -loop integrand for scattering amplitudes in \( \mathcal{N} = 4 \) SYM in the planar limit, manifesting the full Yangian symmetry of the theory. This generalizes the BCFW recursion relation for tree amplitudes to all loop orders, and extends the Grassmannian duality for leading singularities to the full amplitude. It also provides a new physical picture for the meaning of loops, associated with canonical operations for removing particles in a Yangian-invariant way. Loop amplitudes arise from the “entangled” removal of pairs of particles, and are naturally presented as an integral over lines in momentum-twistor space. As expected from manifest Yangian invariance, the integrand is given as a sum over non-local terms, rather than the familiar decomposition in terms of local scalar integrals with rational coefficients. Knowing the integrands explicitly, it is straightforward to express them in local forms if desired; this turns out to be done most naturally using a novel basis of chiral, tensor integrals written in momentum-twistor space, each of which has unit leading singularities. As simple illustrative examples, we present a number of new multi-loop results written in local form, including the 6- and 7-point 2-loop NMHV amplitudes. Very concise expressions are presented for all 2-loop MHV amplitudes, as well as the 5-point 3-loop MHV amplitude. The structure of the loop integrand strongly suggests that the integrals yielding the physical amplitudes are “simple”, and determined by IR-anomalies. We briefly comment on extending these ideas to more general planar theories.

Keywords

Supersymmetric gauge theory Extended Supersymmetry Gauge Symmetry 

References

  1. [1]
    S.J. Parke and T.R. Taylor, An amplitude for n gluon scattering, Phys. Rev. Lett. 56 (1986) 2459 [SPIRES].CrossRefADSGoogle Scholar
  2. [2]
    F.A. Berends and W.T. Giele, Recursive calculations for processes with n gluons, Nucl. Phys. B 306 (1988) 759 [SPIRES].CrossRefADSGoogle Scholar
  3. [3]
    E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys. 252 (2004) 189 [hep-th/0312171] [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  4. [4]
    F. Cachazo, P. Svrček and E. Witten, MHV vertices and tree amplitudes in gauge theory, JHEP 09 (2004) 006 [hep-th/0403047] [SPIRES].CrossRefADSGoogle Scholar
  5. [5]
    R. Britto, F. Cachazo and B. Feng, New recursion relations for tree amplitudes of gluons, Nucl. Phys. B 715 (2005) 499 [hep-th/0412308] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  6. [6]
    R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  7. [7]
    A. Brandhuber, P. Heslop and G. Travaglini, A note on dual superconformal symmetry of the \( \mathcal{N} = 4 \) super Yang-Mills S-matrix, Phys. Rev. D 78 (2008) 125005 [arXiv:0807.4097] [SPIRES]. MathSciNetADSGoogle Scholar
  8. [8]
    N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the simplest quantum field theory?, JHEP 09 (2010) 016 [arXiv:0808.1446] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  9. [9]
    Z. Bern, L.J. Dixon and D.A. Kosower, On-shell methods in perturbative QCD, Annals Phys. 322 (2007) 1587 [arXiv:0704. 2798] [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  10. [10]
    C.F. Berger et al., An automated implementation of on-shell methods for one-loop amplitudes, Phys. Rev. D 78 (2008) 036003 [arXiv:0803.4180] [SPIRES].ADSGoogle Scholar
  11. [11]
    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One-loop n-point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226] [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  12. [12]
    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys. B 435 (1995) 59 [hep-ph/9409265] [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    Z. Bern, L.J. Dixon and D.A. Kosower, Progress in one-loop QCD computations, Ann. Rev. Nucl. Part. Sci. 46 (1996) 109 [hep-ph/9602280] [SPIRES].CrossRefADSGoogle Scholar
  14. [14]
    Z. Bern, L.J. Dixon and D.A. Kosower, Two-loop g → gg splitting amplitudes in QCD, JHEP 08 (2004) 012 [hep-ph/0404293] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  15. [15]
    Z. Bern, J.J.M. Carrasco, H. Johansson and D.A. Kosower, Maximally supersymmetric planar Yang-Mills amplitudes at five loops, Phys. Rev. D 76 (2007) 125020 [arXiv:0705.1864] [SPIRES].MathSciNetADSGoogle Scholar
  16. [16]
    J.L. Bourjaily, J.M. Henn and M. Spradlin, The cusp anomalous dimension at five loops and beyond, work in progress (2010).Google Scholar
  17. [17]
    J.M. Drummond, J. Henn, V.A. Smirnov and E. Sokatchev, Magic identities for conformal four-point integrals, JHEP 01 (2007) 064 [hep-th/0607160] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  18. [18]
    L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP 06 (2007) 064 [arXiv:0705.0303] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  19. [19]
    L.F. Alday and J. Maldacena, Comments on gluon scattering amplitudes via AdS/CFT, JHEP 11 (2007) 068 [arXiv:0710. 1060] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  20. [20]
    A. Brandhuber, P. Heslop and G. Travaglini, MHV amplitudes in N = 4 super Yang-Mills and Wilson loops, Nucl. Phys. B 794 (2008) 231 [arXiv:0707.1153] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  21. [21]
    G.P. Korchemsky, J.M. Drummond and E. Sokatchev, Conformal properties of four-gluon planar amplitudes and Wilson loops, Nucl. Phys. B 795 (2008) 385 [arXiv:0707.0243] [SPIRES]. MathSciNetADSGoogle Scholar
  22. [22]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, On planar gluon amplitudes/Wilson loops duality, Nucl. Phys. B 795 (2008) 52 [arXiv:0709.2368] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  23. [23]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, The hexagon Wilson loop and the BDS ansatz for the six-gluon amplitude, Phys. Lett. B 662 (2008) 456 [arXiv:0712.4138] [SPIRES].MathSciNetADSGoogle Scholar
  24. [24]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Hexagon Wilson loop = six-gluon MHV amplitude, Nucl. Phys. B 815 (2009) 142 [arXiv:0803.1466] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  25. [25]
    Z. Bern et al., The two-loop six-gluon MHV amplitude in maximally supersymmetric Yang-Mills theory, Phys. Rev. D 78 (2008) 045007 [arXiv:0803.1465] [SPIRES].MathSciNetADSGoogle Scholar
  26. [26]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Dual superconformal symmetry of scattering amplitudes in N = 4 super-Yang-Mills theory, Nucl. Phys. B 828 (2010) 317 [arXiv:0807.1095] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  27. [27]
    L.F. Alday and J. Maldacena, Null polygonal Wilson loops and minimal surfaces in Anti-de-Sitter space, JHEP 11 (2009) 082 [arXiv:0904.0663] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  28. [28]
    J.M. Drummond, J.M. Henn and J. Plefka, Yangian symmetry of scattering amplitudes in \( \mathcal{N} = 4 \) super Yang-Mills theory, JHEP 05 (2009) 046 [arXiv:0902.2987] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  29. [29]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Conformal Ward identities for Wilson loops and a test of the duality with gluon amplitudes, Nucl. Phys. B 826 (2010) 337 [arXiv:0712.1223] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  30. [30]
    A. Brandhuber, P. Heslop and G. Travaglini, One-loop amplitudes in \( \mathcal{N} = 4 \) super Yang-Mills and anomalous dual conformal symmetry, JHEP 08 (2009) 095 [arXiv:0905.4377] [SPIRES]. CrossRefMathSciNetADSGoogle Scholar
  31. [31]
    A. Brandhuber, P. Heslop and G. Travaglini, Proof of the dual conformal anomaly of one-loop amplitudes in N = 4 SYM, JHEP 10 (2009) 063 [arXiv:0906.3552] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  32. [32]
    H. Elvang, D.Z. Freedman and M. Kiermaier, Dual conformal symmetry of 1-loop NMHV amplitudes in N = 4 SYM theory, JHEP 03 (2010) 075 [arXiv:0905.4379] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  33. [33]
    N. Arkani-Hamed, F. Cachazo, C. Cheung and J. Kaplan, A duality for the S matrix, JHEP 03 (2010) 020 [arXiv:0907.5418] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  34. [34]
    J.M. Drummond and J.M. Henn, Simple loop integrals and amplitudes in \( \mathcal{N} = 4 \) SYM, arXiv:1008.2965 [SPIRES].
  35. [35]
    N. Arkani-Hamed, F. Cachazo and C. Cheung, The Grassmannian origin of dual superconformal invariance, JHEP 03 (2010) 036 [arXiv:0909.0483] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  36. [36]
    L. Mason and D. Skinner, Dual superconformal invariance, momentum twistors and Grassmannians, JHEP 11 (2009) 045 [arXiv:0909.0250] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  37. [37]
    A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, arXiv:0905.1473 [SPIRES].
  38. [38]
    J.M. Drummond and L. Ferro, Yangians, Grassmannians and T-duality, JHEP 07 (2010) 027 [arXiv:1001.3348] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  39. [39]
    N. Beisert, J. Henn, T. McLoughlin and J. Plefka, One-loop superconformal and Yangian symmetries of scattering amplitudes in N = 4 super Yang-Mills, JHEP 04 (2010) 085 [arXiv:1002.1733] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  40. [40]
    T. Bargheer, N. Beisert, W. Galleas, F. Loebbert and T. McLoughlin, Exacting N = 4 superconformal symmetry, JHEP 11 (2009) 056 [arXiv:0905.3738] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  41. [41]
    J.M. Drummond and L. Ferro, The Yangian origin of the Grassmannian integral, arXiv:1002.4622 [SPIRES].
  42. [42]
    G.P. Korchemsky and E. Sokatchev, Superconformal invariants for scattering amplitudes in \( \mathcal{N} = 4 \) SYM theory, Nucl. Phys. B 839 (2010) 377 [arXiv:1002.4625] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  43. [43]
    P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley, New York U.S.A. (1978).zbMATHGoogle Scholar
  44. [44]
    N. Arkani-Hamed, J. Bourjaily, F. Cachazo and J. Trnka, Unification of residues and Grassmannian dualities, arXiv:0912.4912 [SPIRES].
  45. [45]
    J.M. Drummond and J.M. Henn, All tree-level amplitudes in \( \mathcal{N} = 4 \) SYM, JHEP 04 (2009) 018 [arXiv:0808.2475] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  46. [46]
    D. Nandan, A. Volovich and C. Wen, A Grassmannian etude in NMHV minors, JHEP 07 (2010) 061 [arXiv:0912.3705] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  47. [47]
    J.L. Bourjaily, J. Trnka, A. Volovich and C. Wen, The Grassmannian and the twistor string: connecting all trees in \( \mathcal{N} = 4 \) SYM, arXiv:1006.1899 [SPIRES].
  48. [48]
    N. Arkani-Hamed, J. Bourjaily, F. Cachazo and J. Trnka, Local spacetime physics from the Grassmannian, arXiv:0912.3249 [SPIRES].
  49. [49]
    A. Sever and P. Vieira, Symmetries of the \( \mathcal{N} = 4 \) SYM S-matrix, arXiv:0908.2437 [SPIRES].
  50. [50]
    S. Caron-Huot, Loops and trees, arXiv:1007.3224 [SPIRES].
  51. [51]
    A. Hodges, The box integrals in momentum-twistor geometry, arXiv:1004.3323 [SPIRES].
  52. [52]
    L. Mason and D. Skinner, Amplitudes at weak coupling as polytopes in AdS 5, arXiv:1004.3498 [SPIRES].
  53. [53]
    L.F. Alday, J.M. Henn, J. Plefka and T. Schuster, Scattering into the fifth dimension of \( \mathcal{N} = 4 \) super Yang-Mills, JHEP 01 (2010) 077 [arXiv:0908.0684] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  54. [54]
    C. Vergu, The two-loop MHV amplitudes in \( \mathcal{N} = 4 \) supersymmetric Yang-Mills theory, arXiv:0908.2394 [SPIRES].
  55. [55]
    F. Cachazo, M. Spradlin and A. Volovich, Leading singularities of the two-loop six-particle MHV amplitude, Phys. Rev. D 78 (2008) 105022 [arXiv:0805.4832] [SPIRES].ADSGoogle Scholar
  56. [56]
    D. Kosower, R. Roiban and C. Vergu, work in progress (2010).Google Scholar
  57. [57]
    F. Cachazo, Sharpening the leading singularity, arXiv:0803.1988 [SPIRES].
  58. [58]
    E.I. Buchbinder and F. Cachazo, Two-loop amplitudes of gluons and octa-cuts in \( \mathcal{N} = 4 \) super Yang-Mills, JHEP 11 (2005) 036 [hep-th/0506126] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  59. [59]
    M. Spradlin, A. Volovich and C. Wen, Three-loop leading singularities and BDS ansatz for five particles, Phys. Rev. D 78 (2008) 085025 [arXiv:0808.1054] [SPIRES].ADSGoogle Scholar
  60. [60]
    C. Anastasiou, Z. Bern, L.J. Dixon and D.A. Kosower, Planar amplitudes in maximally supersymmetric Yang-Mills theory, Phys. Rev. Lett. 91 (2003) 251602 [hep-th/0309040] [SPIRES]. CrossRefMathSciNetADSGoogle Scholar
  61. [61]
    Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev. D 72 (2005) 085001 [hep-th/0505205] [SPIRES].MathSciNetADSGoogle Scholar
  62. [62]
    Z. Bern, M. Czakon, L.J. Dixon, D.A. Kosower and V.A. Smirnov, The four-loop planar amplitude and cusp anomalous dimension in maximally supersymmetric Yang-Mills theory, Phys. Rev. D 75 (2007) 085010 [hep-th/0610248] [SPIRES].MathSciNetADSGoogle Scholar
  63. [63]
    N. Arkani-Hamed, J. Bourjaily, F. Cachazo, S. Caron-Huot and J. Trnka, work in progress (2010).Google Scholar
  64. [64]
    R. Roiban, M. Spradlin and A. Volovich, On the tree-level S-matrix of Yang-Mills theory, Phys. Rev. D 70 (2004) 026009 [hep-th/0403190] [SPIRES].MathSciNetADSGoogle Scholar
  65. [65]
    M. Spradlin and A. Volovich, From twistor string theory to recursion relations, Phys. Rev. D 80 (2009) 085022 [arXiv:0909.0229] [SPIRES].MathSciNetADSGoogle Scholar
  66. [66]
    L. Dolan and P. Goddard, Gluon tree amplitudes in open twistor string theory, JHEP 12 (2009) 032 [arXiv:0909.0499] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  67. [67]
    N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, C. Cheung, J. Kaplan and J. Trnka, Inverse soft factors and the Grassmannian, unpublished results (2009).Google Scholar
  68. [68]
    M. Bullimore, L. Mason and D. Skinner, Twistor-strings, Grassmannians and leading singularities, JHEP 03 (2010) 070 [arXiv:0912.0539] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  69. [69]
    J. Kaplan, Unraveling \( {\mathcal{L}_{n,k}} \) : Grassmannian kinematics, JHEP 03 (2010) 025 [arXiv:0912.0957] [SPIRES].CrossRefADSGoogle Scholar
  70. [70]
    N. Arkani-Hamed, F. Cachazo, C. Cheung and J. Kaplan, The S-matrix in twistor space, JHEP 03 (2010) 110 [arXiv:0903.2110] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  71. [71]
    N. Arkani-Hamed and J. Kaplan, On tree amplitudes in gauge theory and gravity, JHEP 04 (2008) 076 [arXiv:0801.2385] [SPIRES].CrossRefMathSciNetGoogle Scholar
  72. [72]
    L. Mason and D. Skinner, Scattering amplitudes and BCFW recursion in twistor space, JHEP 01 (2010) 064 [arXiv:0903.2083] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  73. [73]
    D. Skinner, A direct proof of BCFW recursion for twistor-strings, arXiv:1007.0195 [SPIRES].
  74. [74]
    Z. Bern and G. Chalmers, Factorization in one loop gauge theory, Nucl. Phys. B 447 (1995) 465 [hep-ph/9503236] [SPIRES].CrossRefADSGoogle Scholar
  75. [75]
    W.L. van Neerven and J.A.M. Vermaseren, Large loop integrals, Phys. Lett. B 137 (1984) 241 [SPIRES].ADSGoogle Scholar
  76. [76]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Generalized unitarity for \( \mathcal{N} = 4 \) super-amplitudes, arXiv:0808.0491 [SPIRES].
  77. [77]
    A.P. Hodges, Twistor diagrams for all tree amplitudes in gauge theory: A helicity-independent formalism, hep-th/0512336 [SPIRES].
  78. [78]
    A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical polylogarithms for amplitudes and Wilson loops, Phys. Rev. Lett. 105 (2010) 151605 [arXiv:1006.5703] [SPIRES]. CrossRefADSMathSciNetGoogle Scholar
  79. [79]
    L.F. Alday, D. Gaiotto and J. Maldacena, Thermodynamic bubble ansatz, arXiv:0911.4708 [SPIRES].
  80. [80]
    L.F. Alday, J. Maldacena, A. Sever and P. Vieira, Y-system for scattering amplitudes, J. Phys. A 43 (2010) 485401 [arXiv:1002.2459] [SPIRES].MathSciNetGoogle Scholar
  81. [81]
    L.F. Alday, D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, An operator product expansion for polygonal null Wilson loops, arXiv:1006.2788 [SPIRES].
  82. [82]
    L.F. Alday, B. Eden, G.P. Korchemsky, J. Maldacena and E. Sokatchev, From correlation functions to Wilson loops, arXiv:1007.3243 [SPIRES].
  83. [83]
    B. Eden, G.P. Korchemsky and E. Sokatchev, From correlation functions to scattering amplitudes, arXiv:1007.3246 [SPIRES].
  84. [84]
    J.M. Henn, S.G. Naculich, H.J. Schnitzer and M. Spradlin, Higgs-regularized three-loop four-gluon amplitude in N = 4 SYM: exponentiation andRegge limits, JHEP 04 (2010) 038 [arXiv:1001.1358] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  85. [85]
    J.M. Henn, S.G. Naculich, H.J. Schnitzer and M. Spradlin, More loops and legs in Higgs-regulated \( \mathcal{N} = 4 \) SYM amplitudes, JHEP 08 (2010) 002 [arXiv:1004.5381] [SPIRES].CrossRefADSMathSciNetGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • N. Arkani-Hamed
    • 1
  • J. Bourjaily
    • 1
    • 2
  • F. Cachazo
    • 1
    • 3
  • S. Caron-Huot
    • 1
  • J. Trnka
    • 1
    • 2
  1. 1.School of Natural SciencesInstitute for Advanced StudyPrincetonU.S.A.
  2. 2.Department of PhysicsPrinceton UniversityPrincetonU.S.A.
  3. 3.Perimeter Institute for Theoretical PhysicsWaterlooCanada

Personalised recommendations