Feynman rules for the rational part of the electroweak 1-loop amplitudes in the Rξ gauge and in the unitary gauge

Open Access
Article

Abstract

We present the complete set of Feynman rules producing the rational terms of kind R2 needed to perform any 1-loop calculation in the Electroweak Standard Model. Our formulae are given both in the Rξ gauge and in the Unitary gauge, therefore completing the results in the ’t Hooft-Feynman gauge already presented in a previous publication.

As a consistency check, we verified, in the case of the process H → γγ and in a few other physical cases, the independence of the total Rational Part (R1 +R2) on the chosen gauge. In addition, we explicitly checked the equivalence of the limits ξ→∞ after or before the loop momentum integration in the definition of the Unitary gauge at 1-loop.

Keywords

NLO Computations Standard Model 

References

  1. [1]
    P. Mastrolia, G. Ossola, C.G. Papadopoulos and R. Pittau, Optimizing the reduction of one-loop amplitudes, JHEP 06 (2008) 030 [arXiv:0803.3964] [SPIRES].CrossRefADSGoogle Scholar
  2. [2]
    T. Binoth, G. Ossola, C.G. Papadopoulos and R. Pittau, NLO QCD corrections to tri-boson production, JHEP 06 (2008) 082 [arXiv:0804.0350] [SPIRES].CrossRefADSGoogle Scholar
  3. [3]
    A. van Hameren, C.G. Papadopoulos and R. Pittau, Automated one-loop calculations: a proof of concept, JHEP 09 (2009) 106 [arXiv:0903.4665] [SPIRES].CrossRefADSGoogle Scholar
  4. [4]
    R.K. Ellis, K. Melnikov and G. Zanderighi, Generalized unitarity at work: first NLO QCD results for hadronic W + 3-jet production, JHEP 04 (2009) 077 [arXiv:0901.4101] [SPIRES].CrossRefADSGoogle Scholar
  5. [5]
    C.F. Berger et al., Precise predictions for W + 3 jet production at hadron colliders, Phys. Rev. Lett. 102 (2009) 222001 [arXiv:0902.2760] [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    T. Binoth et al., A proposal for a standard interface between Monte Carlo tools and one-loop programs, Comput. Phys. Commun. 181 (2010) 1612 [arXiv:1001.1307] [SPIRES].CrossRefADSMATHGoogle Scholar
  7. [7]
    SM and NLO Multileg Working Group collaboration, J. R. Andersenetal., The SM and NLO multileg working group: summary report, arXiv:1003.1241 [SPIRES].
  8. [8]
    P. Mastrolia, G. Ossola, T. Reiter and F. Tramontano, Scattering amplitudes from unitarity-based reduction algorithm at the integrand-level, JHEP 08 (2010) 080 [arXiv:1006.0710] [SPIRES].CrossRefADSGoogle Scholar
  9. [9]
    R. Pittau, Testing and improving the numerical accuracy of the NLO predictions, Comput. Phys. Commun. 181 (2010) 1941 [arXiv:1006.3773] [SPIRES].CrossRefADSMATHGoogle Scholar
  10. [10]
    G. Heinrich, G. Ossola, T. Reiter and F. Tramontano, Tensorial Reconstruction at the Integrand Level, JHEP 10 (2010) 105 [arXiv:1008.2441] [SPIRES].CrossRefADSGoogle Scholar
  11. [11]
    F. del Aguila and R. Pittau, Recursive numerical calculus of one-loop tensor integrals, JHEP 07 (2004) 017 [hep-ph/0404120] [SPIRES].CrossRefGoogle Scholar
  12. [12]
    R. Pittau, Formulae for a numerical computation of one-loop tensor integrals, hep-ph/0406105 [SPIRES].
  13. [13]
    G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys. B 763 (2007) 147 [hep-ph/0609007] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  14. [14]
    G. Ossola, C.G. Papadopoulos and R. Pittau, CutTools: a program implementing the OPP reduction method to compute one-loop amplitudes, JHEP 03 (2008) 042 [arXiv:0711.3596] [SPIRES].CrossRefADSGoogle Scholar
  15. [15]
    R. Britto, F. Cachazo and B. Feng, Generalized unitarity and one-loop amplitudes in N =4 super-Yang-Mills, Nucl. Phys. B 725 (2005) 275 [hep-th/0412103] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  16. [16]
    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One-loop n-point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  17. [17]
    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys. B 435 (1995) 59 [hep-ph/9409265] [SPIRES].CrossRefADSGoogle Scholar
  18. [18]
    Z. Bern, L.J. Dixon and D.A. Kosower, One loop corrections to two quark three gluon amplitudes, Nucl. Phys. B 437 (1995) 259 [hep-ph/9409393] [SPIRES].CrossRefADSGoogle Scholar
  19. [19]
    Z. Bern and A.G. Morgan, Massive loop amplitudes from unitarity, Nucl. Phys. B 467 (1996) 479 [hep-ph/9511336] [SPIRES].CrossRefADSGoogle Scholar
  20. [20]
    Z. Bern, L.J. Dixon and D.A. Kosower, One-loop amplitudes for e + e to four partons, Nucl. Phys. B 513 (1998) 3 [hep-ph/9708239] [SPIRES].CrossRefADSGoogle Scholar
  21. [21]
    C. Anastasiou, R. Britto, B. Feng, Z. Kunszt and P. Mastrolia, D-dimensional unitarity cut method, Phys. Lett. B 645 (2007) 213 [hep-ph/0609191] [SPIRES].ADSGoogle Scholar
  22. [22]
    D. Forde, Direct extraction of one-loop integral coefficients, Phys. Rev. D 75 (2007) 125019 [arXiv:0704.1835] [SPIRES].MathSciNetADSGoogle Scholar
  23. [23]
    W.T. Giele, Z. Kunszt and K. Melnikov, Full one-loop amplitudes from tree amplitudes, JHEP 04 (2008) 049 [arXiv:0801.2237] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  24. [24]
    R.K. Ellis, W.T. Giele, Z. Kunszt and K. Melnikov, Masses, fermions and generalized D-dimensional unitarity, Nucl. Phys. B 822 (2009) 270 [arXiv:0806.3467] [SPIRES].CrossRefADSGoogle Scholar
  25. [25]
    G. Ossola, C.G. Papadopoulos and R. Pittau, Numerical evaluation of six-photon amplitudes, JHEP 07 (2007) 085 [arXiv:0704.1271] [SPIRES].CrossRefADSGoogle Scholar
  26. [26]
    G. Bevilacqua, M. Czakon, C.G. Papadopoulos, R. Pittau and M. Worek, A ssault on the NLO wishlist: ppttbb, JHEP 09 (2009) 109 [arXiv:0907.4723] [SPIRES].CrossRefADSGoogle Scholar
  27. [27]
    G. Bevilacqua, M. Czakon, C.G. Papadopoulos and M. Worek, Dominant QCD backgrounds in Higgs boson analyses at the LHC: a study of \( pp \to t\overline t + 2 \) jets at next-to-leading order, Phys. Rev. Lett. 104 (2010) 162002 [arXiv:1002.4009] [SPIRES].CrossRefADSGoogle Scholar
  28. [28]
    T. Melia, K. Melnikov, R. Rontsch and G. Zanderighi, Next-to-leading order QCD predictions for W+W+jj production at the LHC, JHEP 12 (2010) 053 [arXiv:1007.5313] [SPIRES].CrossRefADSGoogle Scholar
  29. [29]
    C.F. Berger et al., Precise predictions for W +4 jet production at the Large Hadron Collider, arXiv:1009.2338 [SPIRES].
  30. [30]
    Z. Bern, L.J. Dixon and D.A. Kosower, On-shell recurrence relations for one-loop QCD amplitudes, Phys. Rev. D 71 (2005) 105013 [hep-th/0501240] [SPIRES].MathSciNetADSGoogle Scholar
  31. [31]
    Z. Bern, L.J. Dixon and D.A. Kosower, The last of the finite loop amplitudes in QCD, Phys. Rev. D 72 (2005) 125003 [hep-ph/0505055] [SPIRES].MathSciNetADSGoogle Scholar
  32. [32]
    Z. Bern, L.J. Dixon and D.A. Kosower, Bootstrapping multi-parton loop amplitudes in QCD, Phys. Rev. D 73 (2006) 065013 [hep-ph/0507005] [SPIRES].MathSciNetADSGoogle Scholar
  33. [33]
    C.F. Berger, Z. Bern, L.J. Dixon, D. Forde and D.A. Kosower, Bootstrapping one-loop QCD amplitudes with general helicities, Phys. Rev. D 74 (2006) 036009 [hep-ph/0604195] [SPIRES].ADSGoogle Scholar
  34. [34]
    G. Ossola, C.G. Papadopoulos and R. Pittau, On the rational terms of the one-loop amplitudes, JHEP 05 (2008) 004 [arXiv:0802.1876] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  35. [35]
    P. Draggiotis, M.V. Garzelli, C.G. Papadopoulos and R. Pittau, Feynman rules for the rational part of the QCD 1-loop amplitudes, JHEP 04 (2009) 072 [arXiv:0903.0356] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  36. [36]
    M.V. Garzelli, I. Malamos and R. Pittau, Feynman rules for the rational part of the electroweak 1-loop amplitudes, JHEP 01 (2010) 040 [arXiv:0910.3130] [SPIRES].CrossRefADSGoogle Scholar
  37. [37]
    T. Binoth, J.P. Guillet and G. Heinrich, Algebraic evaluation of rational polynomials in one-loop amplitudes, JHEP 02 (2007) 013 [hep-ph/0609054] [SPIRES].CrossRefADSGoogle Scholar
  38. [38]
    A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, NLO QCD corrections to top anti-top bottom anti-bottom production at the LHC: 1. quark-antiquark annihilation, JHEP 08 (2008) 108 [arXiv:0807.1248] [SPIRES].CrossRefADSGoogle Scholar
  39. [39]
    Z. Bern and D.A. Kosower, The computation of loop amplitudes in gauge theories, Nucl. Phys. B 379 (1992) 451 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  40. [40]
    Z. Kunszt, A. Signer and Z. Trócsányi, One loop helicity amplitudes for all 2 → 2 processes in QCD and N =1 supersymmetric Yang-Mills theory, Nucl. Phys. B 411 (1994) 397 [hep-ph/9305239] [SPIRES].CrossRefADSGoogle Scholar
  41. [41]
    S. Catani, M.H. Seymour and Z. Trócsányi, Regularization scheme independence and unitarity in QCD cross sections, Phys. Rev. D 55 (1997) 6819 [hep-ph/9610553] [SPIRES].ADSGoogle Scholar
  42. [42]
    Z. Bern, A. De Freitas, L.J. Dixon and H.L. Wong, Supersymmetric regularization, two-loop QCD amplitudes and coupling shifts, Phys. Rev. D 66 (2002) 085002 [hep-ph/0202271] [SPIRES].ADSGoogle Scholar
  43. [43]
    A. Denner, Techniques for calculation of electroweak radiative corrections at the one loop level and results for W physics at LEP-200, Fortschr. Phys. 41 (1993) 307 [arXiv:0709.1075] [SPIRES].Google Scholar
  44. [44]
    J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [SPIRES].
  45. [45]
    J.A.M. Vermaseren, The FORM project, Nucl. Phys. Proc. Suppl. 183 (2008) 19 [arXiv:0806.4080] [SPIRES].CrossRefADSGoogle Scholar
  46. [46]
  47. [47]
    D.Y. Bardin and G. Passarino, The standard model in the making: precision study of the electroweak interactions, Clarendon Press, Oxford U.K. (1999), p. 685 [SPIRES]Google Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Departamento de Física Teórica y del Cosmos y CAFPEUniversidad de GranadaGranadaSpain
  2. 2.INFN – Sezione di MilanoMilanoItaly
  3. 3.Department of Theoretical High Energy Physics, Institute for Mathematics, Astrophysics and Particle PhysicsRadboud Universiteit NijmegenNijmegenthe Netherlands

Personalised recommendations