Scalar mesons in a finite volume

Open Access
Article

Abstract

Using effective field theory methods, we discuss the extraction of the mass and width of the scalar mesons f 0(980) and a 0(980) from the finite-volume spectrum in lattice QCD. In particular, it is argued that the nature of these states can be studied by invoking twisted boundary conditions, as well as investigating the quark mass dependence of the spectrum.

Keywords

Lattice QCD Discrete and Finite Symmetries Lattice Quantum Field Theory 

References

  1. [1]
    R.L. Jaffe, Multi-quark hadrons. 1. The phenomenology of (2 quark 2 anti-quark) mesons, Phys. Rev. D 15 (1977) 267 [SPIRES].ADSGoogle Scholar
  2. [2]
    D. Black, A.H. Fariborz, F. Sannino and J. Schechter, Putative light scalar nonet, Phys. Rev. D 59 (1999) 074026 [hep-ph/9808415] [SPIRES].ADSGoogle Scholar
  3. [3]
    N.N. Achasov and A.V. Kiselev, The new analysis of the KLOE data on the ϕ → ηπ 0 γ decay, Phys. Rev. D 68 (2003) 014006 [hep-ph/0212153] [SPIRES].ADSGoogle Scholar
  4. [4]
    J.R. Pelaez, Light scalars as tetraquarks or two-meson states from large N c and unitarized chiral perturbation theory, Mod. Phys. Lett. A 19 (2004) 2879 [hep-ph/0411107] [SPIRES].ADSGoogle Scholar
  5. [5]
    J.D. Weinstein and N. Isgur, Do multi-quark hadrons exist?, Phys. Rev. Lett. 48 (1982) 659 [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    J.A. Oller and E. Oset, Chiral symmetry amplitudes in the S-wave isoscalar and isovector channels and the σ, f 0(980), a 0(980) scalar mesons, Nucl. Phys. A 620 (1997) 438 [Erratum ibid. A 652 (1999) 407] [hep-ph/9702314] [SPIRES].ADSGoogle Scholar
  7. [7]
    J.A. Oller, E. Oset and J.R. Pelaez, Non-perturbative approach to effective chiral Lagrangians and meson interactions, Phys. Rev. Lett. 80 (1998) 3452 [hep-ph/9803242] [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    J.A. Oller, E. Oset and J.R. Pelaez, Meson-meson interaction in a non-perturbative chiral approach, Phys. Rev. D 59 (1999) 074001 [Erratum ibid. D 60 (1999) 099906] [Erratum ibid. D 75 (2007) 099903] [hep-ph/9804209] [SPIRES].ADSGoogle Scholar
  9. [9]
    T. Branz, T. Gutsche and V.E. Lyubovitskij, f 0(980) meson as a \( K\bar{K} \) molecule in a phenomenological Lagrangian approach, Eur. Phys. J. A 37 (2008) 303 [arXiv:0712.0354] [SPIRES].ADSGoogle Scholar
  10. [10]
    J.A. Oller and E. Oset, N/D description of two meson amplitudes and chiral symmetry, Phys. Rev. D 60 (1999) 074023 [hep-ph/9809337] [SPIRES].ADSGoogle Scholar
  11. [11]
    S. Peris, M. Perrottet and E. de Rafael, Matching long and short distances in large-N c QCD, JHEP 05 (1998) 011 [hep-ph/9805442] [SPIRES].CrossRefADSGoogle Scholar
  12. [12]
    V. Elias, A.H. Fariborz, F. Shi and T.G. Steele, QCD sum rule consistency of lowest-lying \( q\bar{q} \) scalar resonances, Nucl. Phys. A 633 (1998) 279 [hep-ph/9801415] [SPIRES].ADSGoogle Scholar
  13. [13]
    G. Janssen, B.C. Pearce, K. Holinde and J. Speth, On the structure of the scalar mesons f 0(975) and a 0(980), Phys. Rev. D 52 (1995) 2690 [nucl-th/9411021] [SPIRES].ADSGoogle Scholar
  14. [14]
    S. Weinberg, Elementary particle theory of composite particles, Phys. Rev. 130 (1963) 776 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  15. [15]
    S. Weinberg, Quasiparticles and the Born series, Phys. Rev. 131 (1963) 440 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  16. [16]
    S. Weinberg, Evidence that the deuteron is not an elementary particle, Phys. Rev. 137 (1965) B672 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  17. [17]
    D. Morgan, Pole counting and resonance classification, Nucl. Phys. A 543 (1992) 632 [SPIRES].ADSGoogle Scholar
  18. [18]
    N.A. Tornqvist, How to parametrize an S wave resonance and how to identify two hadron composites, Phys. Rev. D 51 (1995) 5312 [hep-ph/9403234] [SPIRES].ADSGoogle Scholar
  19. [19]
    D. Morgan and M.R. Pennington, f 0(S ): Molecule or quark state?, Phys. Lett. B 258 (1991) 444 [Erratum ibid. B 269 (1991) 477] [SPIRES].ADSGoogle Scholar
  20. [20]
    D. Morgan and M.R. Pennington, New data on the \( K\bar{K} \) threshold region and the nature of the f 0(S ), Phys. Rev. D 48 (1993) 1185 [SPIRES].ADSGoogle Scholar
  21. [21]
    V. Baru, J. Haidenbauer, C. Hanhart, Y. Kalashnikova and A.E. Kudryavtsev, Evidence that the a 0(980) and f 0(980) are not elementary particles, Phys. Lett. B 586 (2004) 53 [hep-ph/0308129] [SPIRES].ADSGoogle Scholar
  22. [22]
    V. Baru, J. Haidenbauer, C. Hanhart, A.E. Kudryavtsev and U.-G. Meißner, Flatte-like distributions and the a 0(980)/f 0(980) mesons, Eur. Phys. J. A 23 (2005) 523 [nucl-th/0410099] [SPIRES].ADSGoogle Scholar
  23. [23]
    C. Hanhart, Towards an understanding of the light scalar mesons, Eur. Phys. J. A 31 (2007) 543 [hep-ph/0609136] [SPIRES].ADSGoogle Scholar
  24. [24]
    C. Hanhart, How and when can one identify hadronic molecules in the baryon spectrum, Eur. Phys. J. A 35 (2008) 271 [arXiv:0711.0578] [SPIRES].ADSGoogle Scholar
  25. [25]
    M.G. Alford and R.L. Jaffe, Insight into the scalar mesons from a lattice calculation, Nucl. Phys. B 578 (2000) 367 [hep-lat/0001023] [SPIRES].CrossRefADSGoogle Scholar
  26. [26]
    SCALAR collaboration, T. Kunihiro et al., Scalar mesons in lattice QCD, Phys. Rev. D 70 (2004) 034504 [hep-ph/0310312] [SPIRES].ADSGoogle Scholar
  27. [27]
    N. Ishii et al., Penta-quark baryon in anisotropic lattice QCD, Phys. Rev. D 71 (2005) 034001 [hep-lat/0408030] [SPIRES].ADSGoogle Scholar
  28. [28]
    N. Ishii, T. Doi, Y. Nemoto, M. Oka and H. Suganuma, Spin 3/2 penta-quarks in anisotropic lattice QCD, Phys. Rev. D 72 (2005) 074503 [hep-lat/0506022] [SPIRES].ADSGoogle Scholar
  29. [29]
    F. Okiharu et al., Tetraquark and pentaquark systems in lattice QCD, hep-ph/0507187 [SPIRES].
  30. [30]
    H. Suganuma, K. Tsumura, N. Ishii and F. Okiharu, Lattice QCD evidence for exotic tetraquark resonance, PoS(LAT2005)070 [hep-lat/0509121] [SPIRES].
  31. [31]
    H. Suganuma, K. Tsumura, N. Ishii and F. Okiharu, Tetra-quark resonances in lattice QCD, Prog. Theor. Phys. Suppl. 168 (2007) 168 [arXiv:0707.3309] [SPIRES].CrossRefADSGoogle Scholar
  32. [32]
    N. Mathur et al., Scalar mesons a 0(1450) and σ(600) from lattice QCD, Phys. Rev. D 76 (2007) 114505 [hep-ph/0607110] [SPIRES].MathSciNetADSGoogle Scholar
  33. [33]
    UKQCD collaboration, C. McNeile and C. Michael, Properties of light scalar mesons from lattice QCD, Phys. Rev. D 74 (2006) 014508 [hep-lat/0604009] [SPIRES].ADSGoogle Scholar
  34. [34]
    UKQCD collaboration, A. Hart, C. McNeile, C. Michael and J. Pickavance, A lattice study of the masses of singlet 0++ mesons, Phys. Rev. D 74 (2006) 114504 [hep-lat/0608026] [SPIRES].ADSGoogle Scholar
  35. [35]
    H. Wada et al., Lattice study of low-lying nonet scalar mesons in quenched approximation, Phys. Lett. B 652 (2007) 250 [hep-lat/0702023] [SPIRES].MathSciNetADSGoogle Scholar
  36. [36]
    S. Prelovsek, C. Dawson, T. Izubuchi, K. Orginos and A. Soni, Scalar meson in dynamical and partially quenched two-flavor QCD: lattice results and chiral loops, Phys. Rev. D 70 (2004) 094503 [hep-lat/0407037] [SPIRES].ADSGoogle Scholar
  37. [37]
    S. Prelovsek et al., Searching for tetraquarks on the lattice, arXiv:1002.0193 [SPIRES].
  38. [38]
    S. Prelovsek et al., Lattice study of light scalar tetraquarks with I = 0, 2, 1/2, 3/2: are σ and κ tetraquarks?, Phys. Rev. D 82 (2010) 094507 [arXiv:1005.0948] [SPIRES].ADSGoogle Scholar
  39. [39]
    M. Lüscher, Two particle states on a torus and their relation to the scattering matrix, Nucl. Phys. B 354 (1991) 531 [SPIRES].CrossRefADSGoogle Scholar
  40. [40]
    P.F. Bedaque, Aharonov-Bohm effect and nucleon nucleon phase shifts on the lattice, Phys. Lett. B 593 (2004) 82 [nucl-th/0402051] [SPIRES].ADSGoogle Scholar
  41. [41]
    G.M. de Divitiis, R. Petronzio and N. Tantalo, On the discretization of physical momenta in lattice QCD, Phys. Lett. B 595 (2004) 408 [hep-lat/0405002] [SPIRES].ADSGoogle Scholar
  42. [42]
    G.M. de Divitiis and N. Tantalo, Non leptonic two-body decay amplitudes from finite volume calculations, hep-lat/0409154 [SPIRES].
  43. [43]
    C.T. Sachrajda and G. Villadoro, Twisted boundary conditions in lattice simulations, Phys. Lett. B 609 (2005) 73 [hep-lat/0411033] [SPIRES].ADSGoogle Scholar
  44. [44]
    M. Lage, U.-G. Meißner and A. Rusetsky, A method to measure the antikaon-nucleon scattering length in lattice QCD, Phys. Lett. B 681 (2009) 439 [arXiv:0905.0069] [SPIRES].ADSGoogle Scholar
  45. [45]
    V. Bernard, M. Lage, U.-G. Meißner and A. Rusetsky, Resonance properties from the finite-volume energy spectrum, JHEP 08 (2008) 024 [arXiv:0806.4495] [SPIRES].CrossRefADSGoogle Scholar
  46. [46]
    K.L. Au, D. Morgan and M.R. Pennington, Meson dynamics beyond the quark model: a study of final state interactions, Phys. Rev. D 35 (1987) 1633 [SPIRES].ADSGoogle Scholar
  47. [47]
    S.D. Protopopescu et al., ππ partial wave analysis from reactions π + p → π + π Δ++ and π + p → K + K Δ++ at 7.1 GeV/c, Phys. Rev. D 7 (1973) 1279 [SPIRES].ADSGoogle Scholar
  48. [48]
    S.M. Flatte, Coupled-channel analysis of the πη and \( K\bar{K} \) systems near \( K\bar{K} \) threshold, Phys. Lett. B 63 (1976) 224 [SPIRES].ADSGoogle Scholar
  49. [49]
    M. Lüscher, Volume dependence of the energy spectrum in massive quantum field theories. 2. Scattering states, Commun. Math. Phys. 105 (1986) 153 [SPIRES].CrossRefADSGoogle Scholar
  50. [50]
    D. Hoja, U.G. Meißner and A. Rusetsky, Resonances in an external field: the 1 + 1 dimensional case, JHEP 04 (2010) 050 [arXiv:1001.1641] [SPIRES].CrossRefADSGoogle Scholar
  51. [51]
    U.-G. Meißner, K. Polejaeva and A. Rusetsky, Extraction of the resonance parameters at finite times, arXiv:1007.0860 [SPIRES].
  52. [52]
    C. Liu, X. Feng and S. He, Two particle states in a box and the S-matrix in multi-channel scattering, Int. J. Mod. Phys. A 21 (2006) 847 [hep-lat/0508022] [SPIRES].ADSGoogle Scholar
  53. [53]
    J.R. Pelaez and F.J. Yndurain, The pion pion scattering amplitude, Phys. Rev. D 71 (2005) 074016 [hep-ph/0411334] [SPIRES].ADSGoogle Scholar
  54. [54]
    G. ’t Hooft, G. Isidori, L. Maiani, A.D. Polosa and V. Riquer, A theory of scalar mesons, Phys. Lett. B 662 (2008) 424 [arXiv:0801.2288] [SPIRES].ADSGoogle Scholar
  55. [55]
    M. Cleven, F.-K. Guo, C. Hanhart and U.-G. Meißner, Light meson mass dependence of the positive parity heavy-strange mesons, arXiv:1009.3804 [SPIRES].

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • V. Bernard
    • 1
  • M. Lage
    • 2
  • U.-G. Meißner
    • 2
    • 3
  • A. Rusetsky
    • 2
  1. 1.Groupe de Physique ThéoriqueUniversité de Paris-Sud-XI/CNRSOrsayFrance
  2. 2.Helmholtz-Institut für Strahlen und Kernphysik and Bethe Center for Theoretical PhysicsUniversität BonnBonnGermany
  3. 3.Forschungszentrum Jülich, Jülich Center for Hadron Physics, Institut für Kernphysik (IKP-3) and Institute for Advanced Simulation (IAS-4)JülichGermany

Personalised recommendations