Advertisement

Higgs inflation: consistency and generalisations

  • F. BezrukovEmail author
  • A. Magnin
  • M. Shaposhnikov
  • S. Sibiryakov
Article

Abstract

We analyse the self-consistency of inflation in the Standard Model, where the Higgs field has a large non-minimal coupling to gravity. We determine the domain of energies in which this model represents a valid effective field theory as a function of the background Higgs field. This domain is bounded above by the cutoff scale which is found to be higher than the relevant dynamical scales throughout the whole history of the Universe, including the inflationary epoch and reheating. We present a systematic scheme to take into account quantum loop corrections to the inflationary calculations within the framework of effective field theory. We discuss the additional assumptions that must be satisfied by the ultra-violet completion of the theory to allow connection between the parameters of the inflationary effective theory and those describing the low-energy physics relevant for the collider experiments. A class of generalisations of inflationary theories with similar properties is constructed.

Keywords

Cosmology of Theories beyond the SM Global Symmetries Standard Model 

References

  1. [1]
    F.L. Bezrukov and M. Shaposhnikov, The Standard Model Higgs boson as the inflaton, Phys. Lett. B 659 (2008) 703 [arXiv:0710.3755] [SPIRES].ADSGoogle Scholar
  2. [2]
    B.L. Spokoiny, Inflation and generation of perturbations in broken symmetric theory of gravity, Phys. Lett. B 147 (1984) 39 [SPIRES].ADSGoogle Scholar
  3. [3]
    T. Futamase and K.-i. Maeda, Chaotic inflationary scenario in models having nonminimal coupling with curvature, Phys. Rev. D 39 (1989) 399 [SPIRES].ADSGoogle Scholar
  4. [4]
    D.S. Salopek, J.R. Bond and J.M. Bardeen, Designing Density Fluctuation Spectra in Inflation, Phys. Rev. D 40 (1989) 1753 [SPIRES].ADSGoogle Scholar
  5. [5]
    R. Fakir and W.G. Unruh, Improvement on cosmological chaotic inflation through nonminimal coupling, Phys. Rev. D 41 (1990) 1783 [SPIRES].ADSGoogle Scholar
  6. [6]
    D.I. Kaiser, Primordial spectral indices from generalized Einstein theories, Phys. Rev. D 52 (1995) 4295 [astro-ph/9408044] [SPIRES].MathSciNetADSGoogle Scholar
  7. [7]
    E. Komatsu and T. Futamase, Complete constraints on a nonminimally coupled chaotic inflationary scenario from the cosmic microwave background, Phys. Rev. D 59 (1999) 064029 [astro-ph/9901127] [SPIRES].ADSGoogle Scholar
  8. [8]
    S. Tsujikawa and B. Gumjudpai, Density perturbations in generalized Einstein scenarios and constraints on nonminimal couplings from the Cosmic Microwave Background, Phys. Rev. D 69 (2004) 123523 [astro-ph/0402185] [SPIRES].ADSGoogle Scholar
  9. [9]
    A.D. Linde, Chaotic Inflation, Phys. Lett. B 129 (1983) 177 [SPIRES].MathSciNetADSGoogle Scholar
  10. [10]
    A.O. Barvinsky, A.Y. Kamenshchik and A.A. Starobinsky, Inflation scenario via the Standard Model Higgs boson and LHC, JCAP 11 (2008) 021 [arXiv:0809.2104] [SPIRES].ADSGoogle Scholar
  11. [11]
    F. Bezrukov, D. Gorbunov and M. Shaposhnikov, On initial conditions for the Hot Big Bang, JCAP 06 (2009) 029 [arXiv:0812.3622] [SPIRES].ADSGoogle Scholar
  12. [12]
    J. García-Bellido, D.G. Figueroa and J. Rubio, Preheating in the Standard Model with the Higgs-Inflaton coupled to gravity, Phys. Rev. D 79 (2009) 063531 [arXiv:0812.4624] [SPIRES].ADSGoogle Scholar
  13. [13]
    A. De Simone, M.P. Hertzberg and F. Wilczek, Running Inflation in the Standard Model, Phys. Lett. B 678 (2009) 1 [arXiv:0812.4946] [SPIRES].ADSGoogle Scholar
  14. [14]
    F.L. Bezrukov, A. Magnin and M. Shaposhnikov, Standard Model Higgs boson mass from inflation, Phys. Lett. B 675 (2009) 88 [arXiv:0812.4950] [SPIRES].ADSGoogle Scholar
  15. [15]
    F. Bezrukov and M. Shaposhnikov, Standard Model Higgs boson mass from inflation: two loop analysis, JHEP 07 (2009) 089 [arXiv:0904.1537] [SPIRES].CrossRefADSGoogle Scholar
  16. [16]
    A.O. Barvinsky, A.Y. Kamenshchik, C. Kiefer, A.A. Starobinsky and C. Steinwachs, Asymptotic freedom in inflationary cosmology with a non-minimally coupled Higgs field, JCAP 12 (2009) 003 [arXiv:0904.1698] [SPIRES].ADSGoogle Scholar
  17. [17]
    C.P. Burgess, H.M. Lee and M. Trott, Power-counting and the Validity of the Classical Approximation During Inflation, JHEP 09 (2009) 103 [arXiv:0902.4465] [SPIRES].CrossRefADSGoogle Scholar
  18. [18]
    J.L.F. Barbon and J.R. Espinosa, On the Naturalness of Higgs Inflation, Phys. Rev. D 79 (2009) 081302 [arXiv:0903.0355] [SPIRES].ADSGoogle Scholar
  19. [19]
    C.P. Burgess, H.M. Lee and M. Trott, Comment on Higgs Inflation and Naturalness, JHEP 07 (2010) 007 [arXiv:1002.2730] [SPIRES].CrossRefADSGoogle Scholar
  20. [20]
    M.P. Hertzberg, On Inflation with Non-minimal Coupling, JHEP 11 (2010) 023 [arXiv:1002.2995] [SPIRES].zbMATHCrossRefADSGoogle Scholar
  21. [21]
    R.N. Lerner and J. McDonald, Higgs Inflation and Naturalness, JCAP 04 (2010) 015 [arXiv:0912.5463] [SPIRES].ADSGoogle Scholar
  22. [22]
    K. Freese, J.A. Frieman and A.V. Olinto, Natural inflation with pseudo-Nambu-Goldstone bosons, Phys. Rev. Lett. 65 (1990) 3233 [SPIRES].CrossRefADSGoogle Scholar
  23. [23]
    C. Cheung, P. Creminelli, A.L. Fitzpatrick, J. Kaplan and L. Senatore, The Effective Field Theory of Inflation, JHEP 03 (2008) 014 [arXiv:0709.0293] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  24. [24]
    S. Weinberg, Effective Field Theory for Inflation, Phys. Rev. D 77 (2008) 123541 [arXiv:0804.4291] [SPIRES].MathSciNetADSGoogle Scholar
  25. [25]
    S. Ferrara, R. Kallosh, A. Linde, A. Marrani and A. Van Proeyen, Superconformal Symmetry, NMSSM and Inflation, arXiv:1008.2942 [SPIRES].
  26. [26]
    D. Baumann and D. Green, Desensitizing Inflation from the Planck Scale, JHEP 09 (2010) 057 [arXiv:1004.3801] [SPIRES].CrossRefADSGoogle Scholar
  27. [27]
    A.O. Barvinsky, A.Y. Kamenshchik, C. Kiefer, A.A. Starobinsky and C.F. Steinwachs, Higgs boson, renormalization group and naturalness in cosmology, arXiv:0910.1041 [SPIRES].
  28. [28]
    J.M. Cornwall, D.N. Levin and G. Tiktopoulos, Derivation of Gauge Invariance from High-Energy Unitarity Bounds on the s Matrix, Phys. Rev. D 10 (1974) 1145 [SPIRES].ADSGoogle Scholar
  29. [29]
    M.B. Voloshin, On strong high-energy scattering in theories with weak coupling, Phys. Rev. D 43 (1991) 1726 [SPIRES].ADSGoogle Scholar
  30. [30]
    R. Kallosh, A.D. Linde, D.A. Linde and L. Susskind, Gravity and global symmetries, Phys. Rev. D 52 (1995) 912 [hep-th/9502069] [SPIRES].MathSciNetADSGoogle Scholar
  31. [31]
    M. Shaposhnikov and D. Zenhausern, Scale invariance, unimodular gravity and dark energy, Phys. Lett. B 671 (2009) 187 [arXiv:0809.3395] [SPIRES].MathSciNetADSGoogle Scholar
  32. [32]
    M. Shaposhnikov and D. Zenhausern, Quantum scale invariance, cosmological constant and hierarchy problem, Phys. Lett. B 671 (2009) 162 [arXiv:0809.3406] [SPIRES].MathSciNetADSGoogle Scholar
  33. [33]
    D.H. Lyth and A. Riotto, Particle physics models of inflation and the cosmological density perturbation, Phys. Rept. 314 (1999) 1 [hep-ph/9807278] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  34. [34]
    R.N. Lerner and J. McDonald, A Unitarity-Conserving Higgs Inflation Model, Phys. Rev. D 82 (2010) 103525 [arXiv:1005.2978] [SPIRES].ADSGoogle Scholar
  35. [35]
    C. Germani and A. Kehagias, New Model of Inflation with Non-minimal Derivative Coupling of Standard Model Higgs Boson to Gravity, Phys. Rev. Lett. 105 (2010) 011302 [arXiv:1003.2635] [SPIRES].CrossRefADSGoogle Scholar
  36. [36]
    C. Germani and A. Kehagias, Cosmological Perturbations in the New Higgs Inflation, JCAP 05 (2010) 019 [arXiv:1003.4285] [SPIRES].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • F. Bezrukov
    • 1
    • 3
    Email author
  • A. Magnin
    • 2
  • M. Shaposhnikov
    • 2
  • S. Sibiryakov
    • 2
    • 3
  1. 1.Max-Planck-Institut für KernphysikHeidelbergGermany
  2. 2.École Polytechnique Fédérale de Lausanne, FSB/ITP/LPPCLausanneSwitzerland
  3. 3.Institute for Nuclear Research of the Russian Academy of SciencesMoscowRussia

Personalised recommendations