Stable colored particles R-SUSY relics or not?

  • Matthew R. BuckleyEmail author
  • Bertrand Echenard
  • Dilani Kahawala
  • Lisa Randall
Open Access


R-hadrons are only one of many possible stable colored states that the LHC might produce. All such particles would provide a spectacular, if somewhat unusual, signal at ATLAS and CMS. Produced in large numbers and leaving a characteristic signature throughout all layers of the detector, including the muon chamber, they could be straightforward to discover even with low luminosity. Though such long lived colored particles (LLCPs) can be realized in many extensions of the Standard Model, most analyses of their phenomenology have focused only on R-hadrons. In order to distinguish among the possibilities, fundamental quantum numbers of the new states must be measured. In this paper, we demonstrate how to identify the SU(3) C charge and spin of such new particles at the LHC.


Beyond Standard Model Hadronic Colliders 


  1. [1]
    S. Weinberg, Implications of dynamical symmetry breaking, Phys. Rev. D 13 (1976) 974 [SPIRES].ADSGoogle Scholar
  2. [2]
    S. Weinberg, Implications of dynamical symmetry breaking: an addendum, Phys. Rev. D 19 (1979) 1277 [SPIRES].ADSGoogle Scholar
  3. [3]
    L. Susskind, Dynamics of spontaneous symmetry breaking in the Weinberg-Salam theory, Phys. Rev. D 20 (1979) 2619 [SPIRES].ADSGoogle Scholar
  4. [4]
    G. ’t Hooft et al., Recent developments in gauge theories. Proceedings of the NATO Advanced Study Institute, August 26–September 8, Cargese, France (1979).Google Scholar
  5. [5]
    M. WEinstein, Conserved currents, their commutators and the symmetry structure of renormalizable theories of electromagnetic, weak and strong interactions, Phys. Rev. D 8 (1973) 2511 [SPIRES].ADSGoogle Scholar
  6. [6]
    J. Wess and B. Zumino, Supergauge transformations in four-dimensions, Nucl. Phys. B 70 (1974) 39 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  7. [7]
    I. Antoniadis, A Possible new dimension at a few TeV, Phys. Lett. B 246 (1990) 377 [SPIRES].MathSciNetADSGoogle Scholar
  8. [8]
    I. Antoniadis and K. Benakli, Limits on extra dimensions in orbifold compactifications of superstrings, Phys. Lett. B 326 (1994) 69 [hep-th/9310151] [SPIRES].ADSGoogle Scholar
  9. [9]
    N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, Phenomenology, astrophysics and cosmology of theories with sub-millimeter dimensions and TeV scale quantum gravity, Phys. Rev. D 59 (1999) 086004 [hep-ph/9807344] [SPIRES].ADSGoogle Scholar
  10. [10]
    N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263 [hep-ph/9803315] [SPIRES].ADSGoogle Scholar
  11. [11]
    I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, New dimensions at a millimeter to a Fermi and superstrings at a TeV, Phys. Lett. B 436 (1998) 257 [hep-ph/9804398] [SPIRES].ADSGoogle Scholar
  12. [12]
    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  13. [13]
    L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  14. [14]
    T. Appelquist, H.-C. Cheng and B.A. Dobrescu, Bounds on universal extra dimensions, Phys. Rev. D 64 (2001) 035002 [hep-ph/0012100] [SPIRES].ADSGoogle Scholar
  15. [15]
    T. Appelquist and H.-U. Yee, Universal extra dimensions and the Higgs boson mass, Phys. Rev. D 67 (2003) 055002 [hep-ph/0211023] [SPIRES].ADSGoogle Scholar
  16. [16]
    H.-C. Cheng, K.T. Matchev and M. Schmaltz, Radiative corrections to Kaluza-Klein masses, Phys. Rev. D 66 (2002) 036005 [hep-ph/0204342] [SPIRES].ADSGoogle Scholar
  17. [17]
    C. Macesanu, C.D. McMullen and S. Nandi, Collider implications of universal extra dimensions, Phys. Rev. D 66 (2002) 015009 [hep-ph/0201300] [SPIRES].ADSGoogle Scholar
  18. [18]
    J.L. Feng, A. Rajaraman and F. Takayama, Graviton cosmology in universal extra dimensions, Phys. Rev. D 68 (2003) 085018 [hep-ph/0307375] [SPIRES].ADSGoogle Scholar
  19. [19]
    N.R. Shah and C.E.M. Wagner, Gravitons and dark matter in universal extra dimensions, Phys. Rev. D 74 (2006) 104008 [hep-ph/0608140] [SPIRES].MathSciNetADSGoogle Scholar
  20. [20]
    W.D. Goldberger, Y. Nomura and D. Tucker-Smith, Warped supersymmetric grand unification, Phys. Rev. D 67 (2003) 075021 [hep-ph/0209158] [SPIRES].ADSGoogle Scholar
  21. [21]
    Y. Nomura and D. Tucker-Smith, Spectrum of TeV particles in warped supersymmetric grand unification, Phys. Rev. D 68 (2003) 075003 [hep-ph/0305214] [SPIRES].ADSGoogle Scholar
  22. [22]
    Y. Nomura, D. Tucker-Smith and B. Tweedie, Warped supersymmetric unification with non-unified superparticle spectrum, Phys. Rev. D 71 (2005) 075004 [hep-ph/0403170] [SPIRES].ADSGoogle Scholar
  23. [23]
    Y. Nomura and D. Tucker-Smith, Matter unification in warped supersymmetric SO(10), Nucl. Phys. B 698 (2004) 92 [hep-ph/0403171] [SPIRES].CrossRefADSGoogle Scholar
  24. [24]
    C. Friberg, E. Norrbin and T. Sjöstrand, QCD aspects of leptoquark production at HERA, Phys. Lett. B 403 (1997) 329 [hep-ph/9704214] [SPIRES].ADSGoogle Scholar
  25. [25]
    P. Fishbane, S. Meshkov and P. Ramond, Standard model constraints on fermions, Phys. Lett. B 134 (1984) 81 [SPIRES].ADSGoogle Scholar
  26. [26]
    P.M. Fishbane, S. Meshkov, R.E. Norton and P. Ramond, Chiral fermions beyond the standard model, Phys. Rev. D 31 (1985) 1119 [SPIRES].ADSGoogle Scholar
  27. [27]
    R. Barbieri, T. Gregoire and L.J. Hall, Mirror world at the Large Hadron Collider, hep-ph/0509242 [SPIRES].
  28. [28]
    H.-J. He, N. Polonsky and S.-f. Su, Extra families, Higgs spectrum and oblique corrections, Phys. Rev. D 64 (2001) 053004 [hep-ph/0102144] [SPIRES].ADSGoogle Scholar
  29. [29]
    T. Banks and M. Karliner, Production of mirror fermions near the Z0 peak, Nucl. Phys. B 281 (1987) 399 [SPIRES].CrossRefADSGoogle Scholar
  30. [30]
    N. Polonsky and S.-f. Su, Low-energy limits of theories with two supersymmetries, Phys. Rev. D 63 (2001) 035007 [hep-ph/0006174] [SPIRES].ADSGoogle Scholar
  31. [31]
    D.G.E. Walker, Dark matter stabilization symmetries and long-lived particles at the Large Hadron Collider, arXiv:0907.3142 [SPIRES].
  32. [32]
    M. Fairbairn et al., Stable massive particles at colliders, Phys. Rept. 438 (2007) 1 [hep-ph/0611040] [SPIRES].CrossRefADSGoogle Scholar
  33. [33]
    M. Drees and X. Tata, Signals for heavy exotics at hadron colliders and supercolliders, Phys. Lett. B 252 (1990) 695 [SPIRES].ADSGoogle Scholar
  34. [34]
    A. Arvanitaki, S. Dimopoulos, A. Pierce, S. Rajendran and J.G. Wacker, Stopping gluinos, Phys. Rev. D 76 (2007) 055007 [hep-ph/0506242] [SPIRES].ADSGoogle Scholar
  35. [35]
    D0 collaboration, V.M. Abazov et al., Search for stopped gluinos from \( p\bar{p} \) collisions at \( \sqrt {s} = 1.96\;TeV \), Phys. Rev. Lett. 99 (2007) 131801 [arXiv:0705.0306] [SPIRES].CrossRefADSGoogle Scholar
  36. [36]
    CMS collaboration, M. Kazana, Search for heavy stable charged particles in CMS, PoS(EPS-HEP 2009) 438.
  37. [37]
    ATLAS collaboration, Background studies to searches for long-lived stopped particles decaying out-of-time with lhc collisions, ATLAS-CONF-2010-071 (2010).
  38. [38]
    W. Kilian, T. Plehn, P. Richardson and E. Schmidt, Split supersymmetry at colliders, Eur. Phys. J. C 39 (2005) 229 [hep-ph/0408088] [SPIRES].CrossRefADSGoogle Scholar
  39. [39]
    H. Baer, K.-M. Cheung and J.F. Gunion, A Heavy gluino as the lightest supersymmetric particle, Phys. Rev. D 59 (1999) 075002 [hep-ph/9806361] [SPIRES].ADSGoogle Scholar
  40. [40]
    A. Mafi and S. Raby, An analysis of a heavy gluino LSP at CDF: the heavy gluino window, Phys. Rev. D 62 (2000) 035003 [hep-ph/9912436] [SPIRES].ADSGoogle Scholar
  41. [41]
    A. Mafi and S. Raby, A solution to the μ problem in the presence of a heavy gluino LSP, Phys. Rev. D 63 (2001) 055010 [hep-ph/0009202] [SPIRES].ADSGoogle Scholar
  42. [42]
    S. Raby, Gauge-mediated SUSY breaking with a gluino LSP, Phys. Lett. B 422 (1998) 158 [hep-ph/9712254] [SPIRES].ADSGoogle Scholar
  43. [43]
    S. Raby, Gauge mediated SUSY breaking at an intermediate scale, Phys. Rev. D 56 (1997) 2852 [hep-ph/9702299] [SPIRES].ADSGoogle Scholar
  44. [44]
    H.K. Dreiner, An introduction to explicit R-parity violation, hep-ph/9707435 [SPIRES].
  45. [45]
    E.L. Berger and Z. Sullivan, Lower limits on R-parity violating couplings in supersymmetry, Phys. Rev. Lett. 92 (2004) 201801 [hep-ph/0310001] [SPIRES].CrossRefADSGoogle Scholar
  46. [46]
    G.R. Farrar and P. Fayet, Bounds on R hadron production from calorimetry experiments, Phys. Lett. B 79 (1978) 442 [SPIRES].ADSGoogle Scholar
  47. [47]
    G.R. Farrar and P. Fayet, Phenomenology of the production, decay and detection of new hadronic states associated with supersymmetry, Phys. Lett. B 76 (1978) 575 [SPIRES].ADSGoogle Scholar
  48. [48]
    ALEPH collaboration, A. Heister et al., Search for scalar quarks in e + ecollisions at \( \sqrt {s} \) up to 209 GeV, Phys. Lett. B 537 (2002) 5 [hep-ex/0204036] [SPIRES].ADSGoogle Scholar
  49. [49]
    CDF collaboration, D.E. Acosta et al., Search for the supersymmetric partner of the top quark in dilepton events from \( p\bar{p} \) collisions at \( \sqrt {s} = 1.8\;TeV \), Phys. Rev. Lett. 90 (2003) 251801 [hep-ex/0302009] [SPIRES].CrossRefADSGoogle Scholar
  50. [50]
    ALEPH, DELPHI, L3 and OPAL collaboration, LEP 2 SUSY working group, (2002).Google Scholar
  51. [51]
    ATLAS collaboration, P. Mermod, Discovery potential of R-hadrons with the ATLAS Detector at the LHC, AIP Conf. Proc. 1200 (2010) 750 [arXiv:0909. 1911] [SPIRES].CrossRefADSGoogle Scholar
  52. [52]
    P.F. Smith et al., A search for anomalous hydrogen in enriched D-2 O, using a time-of-flight spectrometer, Nucl. Phys. B 206 (1982) 333 [SPIRES].CrossRefADSGoogle Scholar
  53. [53]
    A. Arvanitaki, C. Davis, P.W. Graham, A. Pierce and J.G. Wacker, Limits on split supersymmetry from gluino cosmology, Phys. Rev. D 72 (2005) 075011 [hep-ph/0504210] [SPIRES].ADSGoogle Scholar
  54. [54]
    M. Kawasaki, K. Kohri and T. Moroi, Big-bang nucleosynthesis and hadronic decay of long-lived massive particles, Phys. Rev. D 71 (2005) 083502 [astro-ph/0408426] [SPIRES].ADSGoogle Scholar
  55. [55]
    EGRET collaboration, P. Sreekumar et al., EGRET observations of the extragalactic gamma ray emission, Astrophys. J. 494 (1998) 523 [astro-ph/9709257] [SPIRES].CrossRefADSGoogle Scholar
  56. [56]
    A.J. Barr, Using lepton charge asymmetry to investigate the spin of supersymmetric particles at the LHC, Phys. Lett. B 596 (2004) 205 [hep-ph/0405052] [SPIRES].ADSGoogle Scholar
  57. [57]
    A.J. Barr, Measuring slepton spin at the LHC, JHEP 02 (2006) 042 [hep-ph/0511115] [SPIRES].CrossRefADSGoogle Scholar
  58. [58]
    M. Battaglia, A. Datta, A. De Roeck, K. Kong and K.T. Matchev, Contrasting supersymmetry and universal extra dimensions at the CLIC multi-TeV e + ecollider, JHEP 07 (2005) 033 [hep-ph/0502041] [SPIRES].CrossRefADSGoogle Scholar
  59. [59]
    J.M. Smillie and B.R. Webber, Distinguishing spins in supersymmetric and universal extra dimension models at the Large Hadron Collider, JHEP 10 (2005) 069 [hep-ph/0507170] [SPIRES].CrossRefADSGoogle Scholar
  60. [60]
    L.-T. Wang and I. Yavin, Spin measurements in cascade decays at the LHC, JHEP 04 (2007) 032 [hep-ph/0605296] [SPIRES].CrossRefADSGoogle Scholar
  61. [61]
    A. Alves and O. Eboli, Unravelling the sbottom spin at the CERN LHC, Phys. Rev. D 75 (2007) 115013 [arXiv:0704.0254] [SPIRES].ADSGoogle Scholar
  62. [62]
    M.R. Buckley, H. Murayama, W. Klemm and V. Rentala, Discriminating spin through quantum interference, Phys. Rev. D 78 (2008) 014028 [arXiv:0711.0364] [SPIRES].ADSGoogle Scholar
  63. [63]
    M.R. Buckley, S.Y. Choi, K. Mawatari and H. Murayama, Determining spin through quantum azimuthal-angle correlations, Phys. Lett. B 672 (2009) 275 [arXiv:0811.3030] [SPIRES].ADSGoogle Scholar
  64. [64]
    M.R. Buckley, B. Heinemann, W. Klemm and H. Murayama, Quantum interference effects among helicities at LEP-II and Tevatron, Phys. Rev. D 77 (2008) 113017 [arXiv:0804.0476] [SPIRES].ADSGoogle Scholar
  65. [65]
    H. Murayama and V. Rentala, Randall-Sundrum graviton spin determination using azimuthal angular dependence, arXiv:0904.4561 [SPIRES].
  66. [66]
    B.C. Allanach, C.M. Harris, M.A. Parker, P. Richardson and B.R. Webber, Detecting exotic heavy leptons at the Large Hadron Collider, JHEP 08 (2001) 051 [hep-ph/0108097] [SPIRES].CrossRefADSGoogle Scholar
  67. [67]
    S. Kuhlmann, CTEQ5 parton distributions and ongoing studies, Nucl. Phys. Proc. Suppl. 79 (1999) 108 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  68. [68]
    D. Milstead, Scattering of heavy stable exotic hadrons, arXiv:0909.2563 [SPIRES].
  69. [69]
    A.C. Kraan, Interactions of heavy stable hadronizing particles, Eur. Phys. J. C 37 (2004) 91 [hep-ex/0404001] [SPIRES].CrossRefADSGoogle Scholar
  70. [70]
    R. Mackeprang and A. Rizzi, Interactions of coloured heavy stable particles in matter, Eur. Phys. J. C 50 (2007) 353 [hep-ph/0612161] [SPIRES].CrossRefADSGoogle Scholar
  71. [71]
    Y.R. de Boer, A.B. Kaidalov, D.A. Milstead and O.I. Piskounova, Interactions of heavy hadrons using Regge phenomenology and the quark gluon string model, J. Phys. G 35 (2008) 075009 [arXiv:0710.3930] [SPIRES].ADSGoogle Scholar
  72. [72]
    GEANT4 collaboration, S. Agostinelli et al., GEANT4: a simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250 [SPIRES].ADSGoogle Scholar
  73. [73]
    R. Mackeprang and D. Milstead, An updated description of heavy-hadron interactions, Eur. Phys. J. C 66 (2010) 493 [arXiv:0908.1868] [SPIRES].CrossRefADSGoogle Scholar
  74. [74]
    R. Mackeprang, Signatures of long-lived colored sparticles, AIP Conf. Proc. 1200 (2010) 746 [arXiv:0909.5104] [SPIRES].CrossRefADSGoogle Scholar
  75. [75]
    M.S. Chanowitz and S.R. Sharpe, Spectrum of gluino bound states, Phys. Lett. B 126 (1983) 225 [SPIRES].ADSGoogle Scholar
  76. [76]
    F. Buccella, G.R. Farrar and A. Pugliese, R baryon masses, Phys. Lett. B 153 (1985) 311 [SPIRES].ADSGoogle Scholar
  77. [77]
    UKQCD collaboration, M. Foster and C. Michael, The mass spectrum of a static adjoint particle, Nucl. Phys. Proc. Suppl. 63 (1998) 724 [hep-lat/9709051] [SPIRES].CrossRefADSGoogle Scholar
  78. [78]
    UKQCD collaboration, M. Foster and C. Michael, Hadrons with a heavy colour-adjoint particle, Phys. Rev. D 59 (1999) 094509 [hep-lat/9811010] [SPIRES].ADSGoogle Scholar
  79. [79]
    S.J. Gates, Jr. and O. Lebedev, Searching for supersymmetry in hadrons, Phys. Lett. B 477 (2000) 216 [hep-ph/9912362] [SPIRES].ADSGoogle Scholar
  80. [80]
    J. Alwall et al., MadGraph/MadEvent v4: the new web generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [SPIRES].CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Matthew R. Buckley
    • 1
    • 2
    Email author
  • Bertrand Echenard
    • 1
  • Dilani Kahawala
    • 3
  • Lisa Randall
    • 3
  1. 1.Center for Particle AstrophysicsFermi National Accelerator LaboratoryBataviaU.S.A.
  2. 2.Department of PhysicsCalifornia Institute of TechnologyPasadenaU.S.A.
  3. 3.Harvard UniversityCambridgeU.S.A.

Personalised recommendations