Axions in the landscape and string theory

  • Michael Dine
  • Guido Festuccia
  • John Kehayias
  • Weitao Wu
Open Access


While axions seem ubiquitous in critical string theories, whether they might survive in any string theoretic description of nature is a difficult question. With some mild assumptions, one can frame the issues in the case that there is an approximate supersymmetry below the underlying string scale. The problem of axions is then closely tied to the question of how moduli are fixed. We consider, from this viewpoint, the possibility that supersymmetry is broken at an intermediate scale, as in “gravity mediation”, at a low scale, as in gauge mediation, and at a very high scale, to model the possibility that there is no low energy supersymmetry. Putative mechanisms for moduli fixing can then be systematically classified, and at least for intermediate and high scale breaking, light axions appear plausible. In the course of this work, we are lead to consider aspects of moduli fixing and supersymmetry breaking, and we revisit the possibility of very large extra dimensions.


Strings and branes phenomenology 


  1. [1]
    E. Witten, Some properties of O(32) superstrings, Phys. Lett. B 149 (1984) 351 [SPIRES].MathSciNetADSGoogle Scholar
  2. [2]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [SPIRES].MathSciNetADSGoogle Scholar
  3. [3]
    T. Banks, M. Dine and E. Gorbatov, Is there a string theory landscape, JHEP 08 (2004) 058 [hep-th/0309170] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  4. [4]
    J.F. Donoghue, Dynamics of M-theory vacua, Phys. Rev. D 69 (2004) 106012 [hep-th/0310203] [SPIRES].MathSciNetADSGoogle Scholar
  5. [5]
    J.P. Conlon, F. Quevedo and K. Suruliz, Large-volume flux compactifications: Moduli spectrum and D3/D7 soft supersymmetry breaking, JHEP 08 (2005) 007 [hep-th/0505076] [SPIRES]. CrossRefMathSciNetADSGoogle Scholar
  6. [6]
    K. Choi and K.S. Jeong, String theoretic QCD axion with stabilized saxion and the pattern of supersymmetry breaking, JHEP 01 (2007) 103 [hep-th/0611279] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  7. [7]
    B.S. Acharya, K. Bobkov and P. Kumar, An M-theory solution to the strong CP problem and constraints on the axiverse, JHEP 11 (2010) 105 [arXiv:1004.5138] [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    K. Bobkov, V. Braun, P. Kumar and S. Raby, Stabilizing all Kähler moduli in type IIB orientifolds, JHEP 12 (2010) 056 [arXiv:1003.1982] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  9. [9]
    T. Banks, D.B. Kaplan and A.E. Nelson, Cosmological implications of dynamical supersymmetry breaking, Phys. Rev. D 49 (1994) 779 [hep-ph/9308292] [SPIRES].ADSGoogle Scholar
  10. [10]
    B. de Carlos, J.A. Casas, F. Quevedo and E. Roulet, Model independent properties and cosmological implications of the dilaton and moduli sectors of 4−D strings, Phys. Lett. B 318 (1993) 447 [hep-ph/9308325] [SPIRES].ADSGoogle Scholar
  11. [11]
    R. Brustein and P.J. Steinhardt, Challenges for superstring cosmology, Phys. Lett. B 302 (1993) 196 [hep-th/9212049] [SPIRES].ADSGoogle Scholar
  12. [12]
    L.M. Carpenter, M. Dine, G. Festuccia and L. Ubaldi, Axions in gauge mediation, Phys. Rev. D 80 (2009) 125023 [arXiv:0906.5015] [SPIRES].ADSGoogle Scholar
  13. [13]
    M. Dine, The intermediate scale branch of the landscape, JHEP 01 (2006) 162 [hep-th/0505202] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  14. [14]
    K. Choi, A. Falkowski, H.P. Nilles and M. Olechowski, Soft supersymmetry breaking in KKLT flux compactification, Nucl. Phys. B 718 (2005) 113 [hep-th/0503216] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  15. [15]
    A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper and J. March-Russell, String axiverse, Phys. Rev. D 81 (2010) 123530 [arXiv:0905.4720] [SPIRES].ADSGoogle Scholar
  16. [16]
    R. Bousso and J. Polchinski, Quantization of four-form fluxes and dynamical neutralization of the cosmological constant, JHEP 06 (2000) 006 [hep-th/0004134] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  17. [17]
    T. Banks and M. Dine, Coping with strongly coupled string theory, Phys. Rev. D 50 (1994) 7454 [hep-th/9406132] [SPIRES].MathSciNetADSGoogle Scholar
  18. [18]
    M. Dine, J.L. Feng and E. Silverstein, Retrofitting O’Raifeartaigh models with dynamical scales, Phys. Rev. D 74 (2006) 095012 [hep-th/0608159] [SPIRES].ADSGoogle Scholar
  19. [19]
    M. Dine and J. Kehayias, Discrete R symmetries and low energy supersymmetry, Phys. Rev. D 82 (2010) 055014 [arXiv:0909.1615] [SPIRES].ADSGoogle Scholar
  20. [20]
    P. Breitenlohner and D.Z. Freedman, Positive energy in anti-de Sitter backgrounds and gauged extended supergravity, Phys. Lett. B 115 (1982) 197 [SPIRES]. MathSciNetADSGoogle Scholar
  21. [21]
    P. Breitenlohner and D.Z. Freedman, Stability in gauged extended supergravity, Ann. Phys. 144 (1982) 249 [SPIRES]. CrossRefMathSciNetADSzbMATHGoogle Scholar
  22. [22]
    M. Berg, M. Haack and E. Pajer, Jumping through loops: on soft terms from large volume compactifications, JHEP 09 (2007) 031 [arXiv:0704.0737] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  23. [23]
    M. Cicoli, J.P. Conlon and F. Quevedo, Systematics of string loop corrections in type IIB Calabi-Yau flux compactifications, JHEP 01 (2008) 052 [arXiv:0708.1873] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  24. [24]
    J. Kehayias and W. Wu, String loop corrections to the Kähler metric and the stability of large volume compactifications, to appear.Google Scholar
  25. [25]
    R. Blumenhagen, J.P. Conlon, S. Krippendorf, S. Moster and F. Quevedo, SUSY breaking in local string/F-theory models, JHEP 09 (2009) 007 [arXiv:0906.3297] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  26. [26]
    J.P. Conlon and E. Palti, On gauge threshold corrections for local IIB/F-theory GUTs, Phys. Rev. D 80 (2009) 106004 [arXiv:0907.1362] [SPIRES].ADSGoogle Scholar
  27. [27]
    T. Banks, M. Dine and M. Graesser, Supersymmetry, axions and cosmology, Phys. Rev. D 68 (2003) 075011 [hep-ph/0210256] [SPIRES].ADSGoogle Scholar
  28. [28]
    B. Freivogel, M. Kleban, M. Rodriguez Martinez and L. Susskind, Observational consequences of a landscape, JHEP 03 (2006) 039 [hep-th/0505232] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  29. [29]
    W. Wu, Overshooting and tuning in the landscape, to appear.Google Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Michael Dine
    • 1
  • Guido Festuccia
    • 2
  • John Kehayias
    • 1
  • Weitao Wu
    • 1
  1. 1.Santa Cruz Institute for Particle Physics and Department of PhysicsUniversity of CaliforniaSanta CruzU.S.A.
  2. 2.School of Natural SciencesInstitute for Advanced StudyPrincetonU.S.A.

Personalised recommendations