Advertisement

New supersymmetric higher-derivative couplings: full N = 2 superspace does not count!

  • Bernard de Wit
  • Stefanos KatmadasEmail author
  • Maaike van Zalk
Open Access
Article

Abstract

An extended class of N = 2 locally supersymmetric invariants with higher-derivative couplings based on full superspace integrals, i s constructed. These invariants may depend on unrestricted chiral supermultiplets, on vect or supermultiplets and on the Weyl supermultiplet. Supersymmetry is realized off-shell. A non-renormalization theorem is proven according to which none of these invariants can con tribute to the entropy and electric charges of BPS black holes. Some of these invariant s may be relevant for topological string deformations.

Keywords

Black Holes in String Theory Supergravity Models 

References

  1. [1]
    E. Bergshoeff, M. de Roo and B. de Wit,Extended conformal supergravity, Nucl. Phys. B 182 (1981) 173 [SPIRES]. CrossRefADSGoogle Scholar
  2. [2]
    I. Antoniadis, E. Gava, K.S. Narain and T.R. Taylor, Topological amplitudes in string theory, Nucl. Phys. B 413 (1994) 162 [hep-th/9307158] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  3. [3]
    M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes, Commun. Math. Phys. 165 (1994) 311 [hep-th/9309140] [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  4. [4]
    G.L. Cardoso, B. de Wit and T. Mohaupt, Corrections to macroscopic supersymmetric black-hole entropy, Phys. Lett. B 451 (1999) 309 [hep-th/9812082] [SPIRES].ADSGoogle Scholar
  5. [5]
    M. Henningson, Extended superspace, higher derivatives and SL(2,Z) duality, Nucl. Phys. B 458 (1996) 445 [hep-th/9507135] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  6. [6]
    B. de Wit, M.T. Grisaru and M. Roček, Nonholomorphic corrections to the one-loop N = 2 super Yang-Mills action, Phys. Lett. B 374 (1996) 297 [hep-th/9601115] [SPIRES].ADSGoogle Scholar
  7. [7]
    M. Dine and N. Seiberg, Comments on higher derivative operators in some SUSY field theories, Phys. Lett. B 409 (1997) 239 [hep-th/9705057] [SPIRES].MathSciNetADSGoogle Scholar
  8. [8]
    I.L. Buchbinder, S.M. Kuzenko and A.A. Tseytlin, On low-energy effective actions in N = 2, 4 superconformal theories in four dimensions, Phys. Rev. D 62 (2000) 045001 [hep-th/9911221] [SPIRES].MathSciNetADSGoogle Scholar
  9. [9]
    A.T. Banin, I.L. Buchbinder and N.G. Pletnev, On low-energy effective action in N = 2 super Yang-Mills theories on non-abelian background, Phys. Rev. D 66 (2002) 045021 [hep-th/0205034] [SPIRES].ADSGoogle Scholar
  10. [10]
    P.C. Argyres, A.M. Awad, G.A. Braun and F.P. Esposito, Higher-derivative terms in N = 2 supersymmetric effective actions, JHEP 07 (2003) 060 [hep-th/0306118] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  11. [11]
    I. Antoniadis, S. Hohenegger, K.S. Narain and T.R. Taylor, Deformed topological partition function and Nekrasov backgrounds, Nucl. Phys. B 838 (2010) 253 [arXiv:1003.2832] [SPIRES]. CrossRefMathSciNetADSGoogle Scholar
  12. [12]
    M. de Roo, J.W. van Holten, B. de Wit and A. Van Proeyen, Chiral superfields in N = 2 supergravity, Nucl. Phys. B 173 (1980) 175 [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    B. de Wit, J.W. van Holten and A. Van Proeyen, Structure of N = 2 supergravity, Nucl. Phys. B 184 (1981) 77 [Erratum ibid. B 222 (1983) 516] [SPIRES].CrossRefADSGoogle Scholar
  14. [14]
    R.J. Firth and J.D. Jenkins, Super-symmetry with isospin, Nucl. Phys. B 85 (1975) 525 [SPIRES].CrossRefADSGoogle Scholar
  15. [15]
    S. Ferrara and P. van Nieuwenhuizen, Tensor calculus for supergravity, Phys. Lett. B 76 (1978) 404 [SPIRES].ADSGoogle Scholar
  16. [16]
    G. Lopes Cardoso, B. de Wit, J. Kappeli and T. Mohaupt, Stationary BPS solutions in N = 2 supergravity with R 2 interactions, JHEP 12 (2000) 019 [hep-th/0009234] [SPIRES].CrossRefADSGoogle Scholar
  17. [17]
    S. Ferrara, R. Kallosh and A. Strominger, N = 2 extremal black holes, Phys. Rev. D 52 (1995) 5412 [hep-th/9508072] [SPIRES].MathSciNetADSGoogle Scholar
  18. [18]
    A. Strominger, Macroscopic entropy of N = 2 extremal black holes, Phys. Lett. B 383 (1996) 39 [hep-th/9602111] [SPIRES].MathSciNetADSGoogle Scholar
  19. [19]
    S. Ferrara and R. Kallosh, Supersymmetry and attractors, Phys. Rev. D 54 (1996) 1514 [hep-th/9602136] [SPIRES].MathSciNetADSGoogle Scholar
  20. [20]
    R.M. Wald, Black hole entropy is the Nöther charge, Phys. Rev. D 48 (1993) 3427 [gr-qc/9307038] [SPIRES].MathSciNetADSGoogle Scholar
  21. [21]
    T. Jacobson, G. Kang and R.C. Myers, On black hole entropy, Phys. Rev. D 49 (1994) 6587 [gr-qc/9312023] [SPIRES].MathSciNetADSGoogle Scholar
  22. [22]
    V. Iyer and R.M. Wald, Some properties of Nöther charge and a proposal for dynamic al black hole entropy, Phys. Rev. D 50 (1994) 846 [gr-qc/9403028] [SPIRES].MathSciNetADSGoogle Scholar
  23. [23]
    B. de Wit and A. Van Proeyen, Potentials and symmetries of general gauged N = 2 supergravity: Yang-Mills models, Nucl. Phys. B 245 (1984) 89 [SPIRES].CrossRefADSGoogle Scholar
  24. [24]
    B. de Wit, P.G. Lauwers, and A. Van Proeyen, Lagrangians of N = 2 supergravity-matter systems, Nucl. Phys. B 255 (1985) 569 [SPIRES].ADSGoogle Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Bernard de Wit
    • 1
    • 2
  • Stefanos Katmadas
    • 1
    Email author
  • Maaike van Zalk
    • 1
  1. 1.Institute for Theoretical PhysicsUtrecht UniversityUtrechtThe Netherlands
  2. 2.Nikhef Theory GroupAmsterdamThe Netherlands

Personalised recommendations